Part 1: Basic Knowledge (5 points each, 20 points total) For each problem, give a precise definition.

1) What does it mean for an integer to be even?

n is even iff n = 2k for some $k \in \mathbb{Z}$.

2) Let A and B be sets in some fixed universe U. What is the intersection of A and B?

 $A \cap B \coloneqq \{x \in U | x \in A \land x \in B\}$

3) Let A be a set. What does the notation $x \in A$ mean?

x is an element of A, meaning that x is a member of the set A.

4) What is a statement?

A sentence, expression, or some conglomeration of symbols that is, in theory, either true or false (but not both).

Part 2: Basic Skills and Concepts (5 points each, 20 points total)

Р	Q	R	$P \wedge Q$	$(P \land Q) \Rightarrow R$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

5) Find the truth table for $(P \land Q) \Rightarrow R$ where *P*, *Q*, and *R* are statements.

6) Find the negation of:

$$\forall_{x \in \mathbb{Z}} \exists_{v \in \mathbb{Z}} (xy + y = x^2)$$

 $\exists_{x\in\mathbb{Z}} \forall_{y\in\mathbb{Z}} (xy+y\neq x^2)$

7) Draw a Venn Diagram illustrating the set $(A \cap B) \cup C$

Plz excuse the drawing...

8) What ([4,7] ∪ (5,9)) ∩ \mathbb{Z} ?

 $[4,9) \cap \mathbb{Z} = \{4,5,6,7,8\}$

Part 4: Proofs (10 points each, 60 points total)

9) Let *P*, *Q*, and *R* be statements. Prove that:

$$\left(\left(P \Rightarrow (Q \Rightarrow R)\right) \land (P \Rightarrow Q) \land P\right) \Rightarrow R$$

1 <i>P</i>	Premise
$2 P \Rightarrow Q$	Premise
$3 P \Rightarrow (Q \Rightarrow R)$	Premise
4 <i>Q</i>	Modus Ponens on lines 1 and 2.
$5 Q \Rightarrow R$	Modus Ponens on lines 1 and 3.
6 <i>R</i>	Modus Ponens on lines 4 and 5.
7 Therefore, $((P \Rightarrow (Q \Rightarrow R)) \land (P \Rightarrow Q) \land P) \Rightarrow R$	

10) Let n be an even integer. Prove that n^2 is even.

1 Assume *n* is an even integers. \therefore n = 2k for some $k \in \mathbb{Z}$ \therefore $n^2 = 4k^2 = 2(2k^2)$ \therefore n^2 is even

Definition of even Algebra Definition of even. 11) Let A and B be sets. Prove that if $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

1 Assume $A \subseteq B$ 2 Assume $X \in \mathcal{P}(A)$ $\therefore X \subseteq A$ $\therefore X \subseteq B$ $\therefore X \in \mathcal{P}(B)$ $\therefore \mathcal{P}(A) \subseteq \mathcal{P}(B)$

Definition of power set Transitive property of subset (T65) Definition of power set Definition of subset 12) Let n be an integer. If 6|n, prove that 3|n.

1 Assume 6|n $2 \therefore n = 6k$ for some $k \in \mathbb{Z}$ $3 \therefore n = 3(2k)$ $4 \therefore 3|n$

Definition of divides Algebra on 2 Definition of divides 13) Prove that for every natural number $n, \frac{1}{n} \leq 1$. (We are not including 0)

1 Let n be	а	natura	l number

$2 \div n \ge 1$	Definition of natural numbers
$3 \div \frac{n}{n} \ge \frac{1}{n}$	Divide (2) by n , note that $n > 0$ so the sign doesn't flip.
$4 \div 1 \ge \frac{1}{n}$	Algebra on (3)
$5 \div \frac{1}{n} \le 1$	Rewrite (4)

14) Prove that $\sqrt{5}$ is irrational ... just kidding. We'll save that for later. Instead, prove that there exists a rational number.

Note that 2, $3 \in \mathbb{Z}$, therefore by the definition of rational number $\frac{2}{3} \in \mathbb{Q}$.