Name \qquad

Part 1: Basic Knowledge (5 points each, 20 points total)
For each problem, give a precise definition.

1) What does it mean for an integer to be even?
n is even iff $n=2 k$ for some $k \in \mathbb{Z}$.
2) Let A and B be sets in some fixed universe U. What is the intersection of A and B ?
$A \cap B:=\{x \in U \mid x \in A \wedge x \in B\}$
3) Let A be a set. What does the notation $x \in A$ mean?
x is an element of A, meaning that x is a member of the set A.
4) What is a statement?

A sentence, expression, or some conglomeration of symbols that is, in theory, either true or false (but not both).

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
5) Find the truth table for $(P \wedge Q) \Rightarrow R$ where P, Q, and R are statements.

P	Q	R	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$
T	T	T	T	T
T	T	F	T	F
T	F	T	F	T
T	F	F	F	T
F	T	T	F	T
F	T	F	F	T
F	F	T	F	T
F	F	F	F	T

6) Find the negation of:

$$
\forall_{x \in \mathbb{Z}} \exists_{y \in \mathbb{Z}}\left(x y+y=x^{2}\right)
$$

$\exists_{x \in \mathbb{Z}} \forall_{y \in \mathbb{Z}}\left(x y+y \neq x^{2}\right)$
7) Draw a Venn Diagram illustrating the set $(A \cap B) \cup C$

Plz excuse the drawing...

8) What $([4,7] \cup(5,9)) \cap \mathbb{Z}$?
$[4,9) \cap \mathbb{Z}=\{4,5,6,7,8\}$

Part 4: Proofs (10 points each, 60 points total)
9) Let P, Q, and R be statements. Prove that:

$$
((P \Rightarrow(Q \Rightarrow R)) \wedge(P \Rightarrow Q) \wedge P) \Rightarrow R
$$

$1 P$
$2 P \Rightarrow Q$
$3 P \Rightarrow(Q \Rightarrow R)$
$4 Q$
$5 Q \Rightarrow R$
$6 R$
7 Therefore, $((P \Rightarrow(Q \Rightarrow R)) \wedge(P \Rightarrow Q) \wedge P) \Rightarrow R$

Premise
Premise
Premise
Modus Ponens on lines 1 and 2.
Modus Ponens on lines 1 and 3.
Modus Ponens on lines 4 and 5.
10) Let n be an even integer. Prove that n^{2} is even.

1 Assume n is an even integers.
$2 \therefore n=2 k$ for some $k \in \mathbb{Z} \quad$ Definition of even
$3 \therefore n^{2}=4 k^{2}=2\left(2 k^{2}\right)$
$4 \therefore n^{2}$ is even

Algebra
Definition of even.
11) Let A and B be sets. Prove that if $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

1 Assume $A \subseteq B$
2 Assume $X \in \mathcal{P}(A)$
$3 \therefore X \subseteq A$
$4 \therefore X \subseteq B$
$5 \therefore X \in \mathcal{P}(B)$
$6 \therefore \mathcal{P}(A) \subseteq \mathcal{P}(B)$
Definition of power set
Transitive property of subset (T65)
Definition of power set
Definition of subset
12) Let n be an integer. If $6 \mid n$, prove that $3 \mid n$.

1 Assume 6|n
$2 \therefore n=6 k$ for some $k \in \mathbb{Z}$
$3 \therefore n=3(2 k)$
$4 \therefore 3 \mid n$
Definition of divides
Algebra on 2
Definition of divides
13) Prove that for every natural number $n, \frac{1}{n} \leq 1$.
(We are not including 0)

1 Let n be a natural number
$2 \therefore n \geq 1$
$3 \therefore \frac{n}{n} \geq \frac{1}{n}$
$4 \therefore 1 \geq \frac{1}{n}$
$5 \therefore \frac{1}{n} \leq 1$

Definition of natural numbers
Divide (2) by n, note that $n>0$ so the sign doesn't flip.
Algebra on (3)
Rewrite (4)
14) Prove that $\sqrt{5}$ is irrational ... just kidding. We'll save that for later. Instead, prove that there exists a rational number.

Note that $2,3 \in \mathbb{Z}$, therefore by the definition of rational number $\frac{2}{3} \in \mathbb{Q}$.

