Name \qquad

Part 1: Basic Knowledge (5 points each, 20 points total)
For each problem, give a precise definition.

1) Consider the function notation below. What is " $x \mapsto f(x)$ " called?

$$
\begin{aligned}
f: A & \rightarrow B \\
x & \mapsto f(x)
\end{aligned}
$$

The rule.
2) Let S be a set. What is the definition of a relation on S ?

Any subset of $S \times S$.

For comparison, a relation from A to B is any subset of $A \times B$.
3) Let $f: A \rightarrow B$ be a function. What does it mean for f to be onto? Give the definition.

$$
\forall_{b \in B} \exists_{a \in A}(f(a)=b)
$$

Or in words, "for everything in the codomain, there is something in the domain that maps to it"
Or a little more conceptually, "the range of f is the entire codomain of f "
4) Let R be a relation on the set S. What does it mean for R to be symmetric? Give the definition.

For all $x, y \in S$, if $x R y$, then $y R x$.

Or

$$
\forall_{x, y \in S}(x R y \rightarrow y R x)
$$

(No points were deducted if you forgot the universal... but you shouldn't forget it!)
Note the key difference between implication and conjunction. IF $x R y$, then $y R x$ is different from saying BOTH $x R y$ and $y R x$.

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
5) Find the indexed union below.

$$
\bigcup_{k=1}^{\infty}\left[\frac{1}{k}, 2+\frac{1}{k}\right]
$$

$(0,3]$
$6)$ Evaluate the function below at 5.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R}^{2} \\
x & \mapsto\left(3 x+2, x^{2}\right)
\end{aligned}
$$

$$
f(5)=\left(3 \cdot 5+2,5^{2}\right)=(17,25)
$$

7) Illustrate the relation below as a digraph. (The one with circular nodes and arrows between them) $\{(1,3),(1,4),(2,3),(3,4),(4,4)\}$

8) Which of the following relations are symmetric? Circle Y for Yes and N or No .
$Y \mathrm{~N}$ a) R on \mathbb{R} given by $x R y$ iff $x y=5$.
$\mathrm{Y} N$ b) R on the set of polynomials given by $f R g$ iff $f(0) \leq g(0)$
$Y \mathrm{~N}$ c) $\quad R$ on \mathbb{Z} given by $x R y$ iff $x-2 y=0$
$Y \mathrm{~N}$ d) R on \mathbb{Z} given by $x R y$ iff $5 \mid x-y$
$\mathrm{Y} N \mathrm{e}) \quad R$ on the set of people given by $p R q$ iff p and q have the same last name.

Part 3: Proofs (10 points each, 40 points total)
9) Consider the relation below. Prove that it is reflexive.

Let S be the set of all polynomials. Define R as the relation on S given by:
$f R g$ iff $\operatorname{deg}(f) \leq \operatorname{deg}(g)$

Let f be a polynomial. Then $\operatorname{deg}(f)=\operatorname{deg}(f)$, so $\operatorname{deg}(f) \leq \operatorname{deg}(f)$. Therefore $f R f$.
10) Prove that the function below is injective (also known as one-to-one):

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 14 x-3
\end{aligned}
$$

Let $x_{1}, x_{2} \in \mathbb{R}$
Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\therefore 14 x_{1}-3=14 x_{2}-3 \quad$ Plug in f
$\therefore 14 x_{1}=14 x_{2}$
Add 3 to both side
$\therefore x_{1}=x_{2}$
Divide by 14 on both sides
Therefore f is injective. Definition of injective.
11) Let I be an index set and A_{k} a set for each $k \in I$. Prove that:

$$
\forall_{j \in I}\left(A_{j} \subseteq \bigcup_{i \in I} A_{i}\right)
$$

Let $j \in I$.
Assume $x \in A_{j}$
$\therefore x \in \bigcup_{i \in I} A_{i} \quad$ Definition of union
$\therefore A_{j} \subseteq \mathrm{U}_{i \in I} A_{i}$
Therefore for all $j \in I, A_{j} \subseteq \bigcup_{i \in I} A_{i}$. Universal generalization
12) Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x$ is invertible.

We show that it is invertible by proving that $g(x)=\frac{1}{2} x$ is the inverse:
$(f \circ g)(x)=f(g(x))=2\left(\frac{1}{2} x\right)=x$
$(g \circ f)(x)=g(f(x))=\frac{1}{2}(2 x)=x$

Part 4: Review (20 points total)
13) Determine whether these statements are true or false.
(5 points)
T F a) $\forall_{x \in \mathbb{R}}\left(x^{2} \geq 4\right)$
T F b) $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x+y=4)$
T F c) $\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}}(x y=0)$
T F d) $\exists_{x \in \mathbb{Z}}(6 \mid x)$
T F e) $\forall_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} \forall_{z \in \mathbb{R}}(x y z=1)$
14) Find $[3,5] \cap(4,6)$.
(5 points)
15) If x is an even integer and y is an odd integer, prove that $2 x+y$ is odd.
(10 points)

Let x be even and y an odd integer.
$\therefore x=2 k$ for some $k \in \mathbb{Z}$
Definition of even
$\therefore y=2 l+1$ for some $l \in \mathbb{Z}$
$\therefore 2 x+y=4 k+2 l+1=2(2 k+l)+1$
$\therefore 2 x+y$ is odd

Definition of odd
Algebra
Definition of odd

