Name \qquad

Part 1: Basic Knowledge (5 points each, 10 points total)

1) What does it mean for $a \equiv_{n} b$? State the definition.

$$
n \mid b-a
$$

2) What does it mean addition to be well defined $\bmod n$? State the definition.

If $a_{1} \equiv_{n} a_{2}$ and $b_{1} \equiv_{n} b_{2}$, then $a_{1}+b_{1} \equiv_{n} a_{2}+b_{2}$.

Or equivalently,

If $\left[a_{1}\right]_{n}=\left[a_{2}\right]_{n}$ and $\left[b_{1}\right]_{n}=\left[b_{2}\right]_{n}$, then $\left[a_{1}+b_{1}\right]_{n}=\left[a_{2}+b_{2}\right]_{n}$.

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
3) Find $3 \cdot 6-4 \bmod 10$.
$18-4 \equiv 14 \equiv 4$
4) Solve $3 x \equiv 5 \bmod 7$.
$x \equiv 4$
5) Solve $3 x \equiv 6 \bmod 12$.
$x \equiv 2,6,10$
6) What is $[5]_{20}$? No words please. Just math.
$[5]_{20}=\{\cdots, 5,25,45, \cdots\}$

Part 3: Proofs (50 points total)
7) Prove that $[5]_{10} \cap[6]_{10}=\emptyset$
(It is not enough to write them down and point to it, though that would get you partial credit. Prove that they have nothing in common, please!) (10 points)

Suppose $x \in[5]_{10} \cap[6]_{10}$.
$\therefore x \in[5]_{10}$
$\therefore x=10 k+5$ for some $k \in \mathbb{Z}$
$\therefore x \in[6]_{10}$
$\therefore x=10 l+6$ for some $l \in \mathbb{Z}$
$\therefore 10 k+5=10 l+6$
$\therefore 10 k-10 l=6-5=1$
$\therefore 10 \mid 1$
This is a contradiction. Therefore $x \notin[5]_{10} \cap[6]_{10}$
Because x was arbitrary, $[5]_{10} \cap[6]_{10}=\varnothing$

OR
$[5]_{10}$ and $[6]_{10}$ are both equivalence classes mod 10. By previous theorem, equivalence classes form a partition, which are inherently disjoint. Therefore $[5]_{10} \cap[6]_{10}=\varnothing$.
8) Prove the equality below for all integers $n \geq 1$. (20 points)

$$
\sum_{l=1}^{n} \frac{1}{(2 l-1)(2 l+1)}=\frac{n}{2 n+1}
$$

Base Case:
$\sum_{l=1}^{1} \frac{1}{(2 l-1)(2 l+1)}=\frac{1}{(1)(3)}=\frac{1}{3}$
$\frac{1}{2 \cdot 1+1}=\frac{1}{3}$
$\therefore \sum_{l=1}^{1} \frac{1}{(2 l-1)(2 l+1)}=\frac{1}{2 \cdot 1+1}$
Assume $\sum_{l=1}^{k} \frac{1}{(2 l-1)(2 l+1)}=\frac{k}{2 k+1}$ for some $k \in \mathbb{Z}$

$$
\begin{aligned}
\sum_{l=1}^{k+1} \frac{1}{(2 l-1)(2 l+1)} & =\sum_{l=1}^{k} \frac{1}{(2 l-1)(2 l+1)}+\frac{1}{(2(k+1)-1)(2(k+1)+1)} \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)}{(2 k+1)(2 k+3)}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)} \\
& =\frac{(k+1)}{(2 k+3)} \\
& =\frac{(k+1)}{(2(k+1)+1)}
\end{aligned}
$$

Therefore by induction, $\sum_{l=1}^{n} \frac{1}{(2 l-1)(2 l+1)}=\frac{n}{2 n+1}$ for all $n \in \mathbb{N}$.
9) Prove the inequality below for all integers $n \geq 2$. (20 points)

$$
n!<n^{n}
$$

Base Case:

$$
2!=2<4=2^{2}
$$

Assume $k!<k^{k}$ for some integer $k \geq 2$.

$$
(k+1)!=(k+1) k!<(k+1) k^{k}<(k+1) \cdot(k+1)^{k}=(k+1)^{k+1}
$$

Therefore $n!<n^{n}$ for all $n \in \mathbb{N}$.

Part 4: Review (20 points total)
10) Find $\{3,4,5,6,7\}-\{2,3,4,5\}$
(5 points)
$\{6,7\}$
11) What is the truth table for $P \Rightarrow Q$? (5 points)

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

12) Prove that if x and y are both rational, then $x+y$ is rational.
(10 points)

Assume $x, y \in \mathbb{Q}$. Then $x=\frac{a}{b}$ and $y=\frac{c}{d}$ for some $a, b, c, d \in \mathbb{Z}$. Therefore:

$$
x+y=\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{c b}{b d}=\frac{a d+c b}{b d} \in \mathbb{Q}
$$

