Part 1: Basic Knowledge (5 points each, 10 points total)

1) What does it mean for $a \equiv_n b$? State the definition.

n|b-a

2) What does it mean addition to be <u>well defined</u> mod *n*? State the definition.

If $a_1 \equiv_n a_2$ and $b_1 \equiv_n b_2$, then $a_1 + b_1 \equiv_n a_2 + b_2$.

Or equivalently,

If $[a_1]_n = [a_2]_n$ and $[b_1]_n = [b_2]_n$, then $[a_1 + b_1]_n = [a_2 + b_2]_n$.

Part 2: Basic Skills and Concepts (5 points each, 20 points total)

3) Find $3 \cdot 6 - 4 \mod 10$.

 $18-4 \equiv 14 \equiv 4$

4) Solve $3x \equiv 5 \mod 7$.

 $x \equiv 4$

5) Solve $3x \equiv 6 \mod 12$.

 $x \equiv 2,6,10$

6) What is $[5]_{20}$? No words please. Just math.

 $[5]_{20} = \{\cdots, 5, 25, 45, \cdots\}$

Part 3: Proofs (50 points total)

7) Prove that $[5]_{10} \cap [6]_{10} = \emptyset$

(It is not enough to write them down and point to it, though that would get you partial credit. *Prove* that they have nothing in common, please!) (10 points)

Suppose $x \in [5]_{10} \cap [6]_{10}$. $\therefore x \in [5]_{10}$ $\therefore x = 10k + 5$ for some $k \in \mathbb{Z}$ $\therefore x \in [6]_{10}$ $\therefore x = 10l + 6$ for some $l \in \mathbb{Z}$ $\therefore 10k + 5 = 10l + 6$ $\therefore 10k - 10l = 6 - 5 = 1$ $\therefore 10|1$ This is a contradiction. Therefore $x \notin [5]_{10} \cap [6]_{10}$ Because x was arbitrary, $[5]_{10} \cap [6]_{10} = \emptyset$

OR

 $[5]_{10}$ and $[6]_{10}$ are both equivalence classes mod 10. By previous theorem, equivalence classes form a partition, which are inherently disjoint. Therefore $[5]_{10} \cap [6]_{10} = \emptyset$.

8) Prove the equality below for all integers $n \ge 1$. (20 points)

$$\sum_{l=1}^{n} \frac{1}{(2l-1)(2l+1)} = \frac{n}{2n+1}$$

Base Case:

$$\sum_{l=1}^{1} \frac{1}{(2l-1)(2l+1)} = \frac{1}{(1)(3)} = \frac{1}{3}$$
$$\frac{1}{2 \cdot 1 + 1} = \frac{1}{3}$$
$$\therefore \sum_{l=1}^{1} \frac{1}{(2l-1)(2l+1)} = \frac{1}{2 \cdot 1 + 1}$$

Assume $\sum_{l=1}^{k} \frac{1}{(2l-1)(2l+1)} = \frac{k}{2k+1}$ for some $k \in \mathbb{Z}$

$$\begin{split} \sum_{l=1}^{k+1} \frac{1}{(2l-1)(2l+1)} &= \sum_{l=1}^{k} \frac{1}{(2l-1)(2l+1)} + \frac{1}{(2(k+1)-1)(2(k+1)+1)} \\ &= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)} \\ &= \frac{k(2k+3)}{(2k+1)(2k+3)} + \frac{1}{(2k+1)(2k+3)} \\ &= \frac{k(2k+3)+1}{(2k+1)(2k+3)} \\ &= \frac{2k^2+3k+1}{(2k+1)(2k+3)} \\ &= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)} \\ &= \frac{(k+1)}{(2k+3)} \\ &= \frac{(k+1)}{(2(k+1)+1)} \end{split}$$

Therefore by induction, $\sum_{l=1}^{n} \frac{1}{(2l-1)(2l+1)} = \frac{n}{2n+1}$ for all $n \in \mathbb{N}$.

9) Prove the inequality below for all integers $n \ge 2$. (20 points) $n! < n^n$

Base Case:

$$2! = 2 < 4 = 2^2$$

Assume $k! < k^k$ for some integer $k \ge 2$.

$$(k+1)! = (k+1)k! < (k+1)k^k < (k+1) \cdot (k+1)^k = (k+1)^{k+1}$$

Therefore $n! < n^n$ for all $n \in \mathbb{N}$.

Part 4: Review (20 points total)

10) Find $\{3,4,5,6,7\} - \{2,3,4,5\}$ (5 points)

{6,7}

11) What is the truth table for $P \Rightarrow Q$? (5 points)

Р	Q	$P \Rightarrow Q$	
Т	Т	Т	
Т	F	F	
F	Т	Т	
F	F	Т	

12) Prove that if x and y are both rational, then x + y is rational. (10 points)

Assume $x, y \in \mathbb{Q}$. Then $x = \frac{a}{b}$ and $y = \frac{c}{d}$ for some $a, b, c, d \in \mathbb{Z}$. Therefore: $x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{cb}{bd} = \frac{ad + cb}{bd} \in \mathbb{Q}$