\qquad Solutions \qquad

1) Find a matrix in echelon form that is row-equivalent to $\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 10 & 12 \\ 0 & 3 & 6\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 10 & 12 \\
0 & 3 & 6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 6 & 12 \\
0 & 3 & 6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 6 & 12 \\
0 & 0 & 0
\end{array}\right]
$$

2) Is the vector $\left[\begin{array}{c}0 \\ 12 \\ 6\end{array}\right]$ in the span of $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 10 \\ 3\end{array}\right]\right\}$? Why or why not?

First note that asking if it is in the span is the same thing as asking if it is a linear combination. Then note that because the two matrices are row equivalent, we know that:

$$
\left[\begin{array}{c}
0 \\
12 \\
6
\end{array}\right] \text { is a linear combination of }\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
10 \\
3
\end{array}\right] \text { if and only if }\left[\begin{array}{c}
0 \\
12 \\
0
\end{array}\right] \text { is a linear combination of }\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
6 \\
0
\end{array}\right] .
$$

Now to answer the question: yes, it is a linear combination of these two vectors. Using the above we can see this in three different ways.

1) Thinking about the matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 6 & 12 \\ 0 & 0 & 0\end{array}\right]$ in $A \vec{x}=\vec{b}$ we see that \vec{x}_{3} is a free variable, and so \vec{a}_{3} is a linear combination of \vec{a}_{1} and \vec{a}_{2}.
2) Thinking about the augmented matrix $\left[\begin{array}{cccc}1 & 2 & \mid & 0 \\ 0 & 6 & \mid 12 \\ 0 & 0 & \mid & 0\end{array}\right]$, this represents the system of equations:
$x_{1}+2 x_{2}=0$
$6 x_{2}=12$
$0=0$
which tells us that indeed the third vector is a linear combination of the first two. In particular $x_{2}=2, x_{1}=-4$.
3) Thinking about the system of equations directly, we have:

$$
\left[\begin{array}{c}
0 \\
12 \\
0
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
6 \\
0
\end{array}\right]
$$

which is the same as

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
6 x_{2} & =12
\end{aligned}
$$

which has the solution $x_{1}=-4, x_{2}=2$.

