1) Find a matrix in echelon form that is row-equivalent to $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 10 & 12 \\ 0 & 3 & 6 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 10 & 12 \\ 0 & 3 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 6 & 12 \\ 0 & 3 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 6 & 12 \\ 0 & 0 & 0 \end{bmatrix}$$

2) Is the vector
$$\begin{bmatrix} 0\\12\\6 \end{bmatrix}$$
 in the span of $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\10\\3 \end{bmatrix} \right\}$? Why or why not?

First note that asking if it is in the span is the same thing as asking if it is a linear combination. Then note that because the two matrices are row equivalent, we know that:

$$\begin{bmatrix} 0\\12\\6 \end{bmatrix}$$
 is a linear combination of
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 2\\10\\3 \end{bmatrix}$$
 if and only if
$$\begin{bmatrix} 0\\12\\0 \end{bmatrix}$$
 is a linear combination of
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 2\\6\\0 \end{bmatrix}$$
.

Now to answer the question: yes, it is a linear combination of these two vectors. Using the above we can see this in three different ways.

1) Thinking about the matrix $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 6 & 12 \\ 0 & 0 & 0 \end{bmatrix}$ in $A\vec{x} = \vec{b}$ we see that \vec{x}_3 is a free variable, and so \vec{a}_3 is a linear combination of \vec{a}_1 and \vec{a}_2 .

2) Thinking about the augmented matrix $\begin{bmatrix} 1 & 2 & | & 0 \\ 0 & 6 & | & 12 \\ 0 & 0 & | & 0 \end{bmatrix}$, this represents the system of equations: $x_1 + 2x_2 = 0$

 $6x_2 = 12$ $6x_2 = 0$ 0 = 0

which tells us that indeed the third vector is a linear combination of the first two. In particular $x_2 = 2, x_1 = -4$.

3) Thinking about the system of equations directly, we have:

$$\begin{bmatrix} 0\\12\\0 \end{bmatrix} = x_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + x_2 \begin{bmatrix} 2\\6\\0 \end{bmatrix}$$

which is the same as

$$x_1 + 2x_2 = 0$$

 $6x_2 = 12$

which has the solution $x_1 = -4$, $x_2 = 2$.