\qquad Solutions \qquad

1) Find a matrix in reduced echelon form that is row-equivalent to $\left[\begin{array}{ccc}2 & 6 & 0 \\ 3 & 9 & 17 \\ 0 & 14 & 28\end{array}\right]$

$$
\left[\begin{array}{ccc}
2 & 6 & 0 \\
3 & 9 & 17 \\
0 & 14 & 28
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 0 \\
3 & 9 & 17 \\
0 & 14 & 28
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & 0 & 17 \\
0 & 14 & 28
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & 14 & 28 \\
0 & 0 & 17
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & 1 & 2 \\
0 & 0 & 17
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

2) Are the vectors $\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}6 \\ 9 \\ 14\end{array}\right]$, and $\left[\begin{array}{c}0 \\ 17 \\ 28\end{array}\right]$ linearly independent or linearly dependent? No justification required. Yes, as we see above that the columns of the matrix are linearly independent.
3) Consider your answer to part (1) as a linear transformation. Apply this transformation to the vector $\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]$.

$$
\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 2+3 \cdot 5 \\
1 \cdot 5+2 \cdot 1 \\
1 \cdot 1
\end{array}\right]=\left[\begin{array}{c}
17 \\
7 \\
1
\end{array}\right]
$$

