Name \qquad Solutions \qquad

Consider the matrix given below.

$$
[T]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

1) Find a basis for the row space of [T].

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]^{t},\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]^{t},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]^{t}\right\}
$$

2) Find a basis for the range of T.

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

3) Find a basis for the null space of [T]

This question doesn't make any sense. The null space is $\{\overrightarrow{0}\}$ which is the unique space without a basis.
4) What is the associated linear operator T ?

$$
\begin{gathered}
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4} \\
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{3}
\end{array}\right]
\end{gathered}
$$

5) Let $[T]^{t}$ denote the transpose of the matrix $[T]$. Find $[T]^{t} \cdot[T]$.

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

