Name Solutions $\qquad$ Linear Algebra; Quiz 12

Consider the matrix $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ -1 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$.

1) Find all the eigenvalues of $A$. Circle your answer.
2) Find all the eigenspaces of $A$. Box your answer(s).

$$
\left.\begin{array}{ccc}
3-x & 1 & 2 \\
-1 & 1-x & 2 \\
0 & 0 & 1-x
\end{array} \right\rvert\,=(1-x) \cdot[(3-x)(1-x)+1]=(1-x)\left(x^{2}-4 x+4\right)=(1-x)(x-2)^{2}
$$

$\lambda_{1}=1:$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
3-1 & 1 & 2 \\
-1 & 1-1 & 2 \\
0 & 0 & 1-1
\end{array}\right] \sim\left[\begin{array}{ccc}
2 & 1 & 2 \\
-1 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{array}\right]} \\
\vec{v}_{1}=\left[\begin{array}{c}
2 \\
-6 \\
1
\end{array}\right]
\end{gathered}
$$

$\lambda_{2}, \lambda_{3}=2:$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
3-2 & 1 & 2 \\
-1 & 1-2 & 2 \\
0 & 0 & 1-2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 2 \\
-1 & -1 & 2 \\
0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]} \\
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
\end{gathered}
$$

The eigenspaces are then:

$$
\operatorname{span}\left(\vec{v}_{1}\right) \text { and } \operatorname{span}\left(\vec{v}_{2}\right)
$$

3) Find all the eigenvalues of the matrix below:

$$
\left[\begin{array}{cccc}
1 & x & y & \pi \\
0 & 2 & 4! & 6.2 \\
0 & 0 & 3 & 2 i \\
0 & 0 & 0 & 4
\end{array}\right]
$$

$$
1,2,3,4
$$

4) Suppose $A$ is $5 \times 5$ matrix with 5 different eigenvalues. How many nontrivial eigenspaces does A have?
