1) Given the system of equations below, describe the solution set. (Don't find it, just describe it in one English sentence or mathematical expression) (3 points)

$$\begin{aligned} x_1 + x_2 + x_3 + x_4 &= 5 \\ x_2 + x_3 + x_4 &= 2 \\ x_3 + x_4 &= 7 \end{aligned}$$

2) Given the system of equations below, describe the solution set. (Don't find it, just describe it in one English sentence or mathematical expression) (3 points)

$$x_1 + x_2 + x_3 + x_4 = 5$$

$$x_2 + x_3 + x_4 = 2$$

3) Given the system of equations below, describe the solution set. (Don't find it, just describe it in one English sentence or mathematical expression) (3 points)

$$\begin{aligned} x_1 + x_2 + x_3 &= 5 \\ x_2 + x_3 &= 2 \\ x_3 &= 7 \end{aligned}$$

4) Is
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 a solution to the matrix equation $\begin{bmatrix} 2 & 3 & 4 & 5\\1 & 1 & 1 & 1 \end{bmatrix}$ $\vec{x} = \begin{bmatrix} 10\\5 \end{bmatrix}$? Why or why not? (3 points)

5) Define the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ via $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x + y \\ 0 \end{bmatrix}$. Explain or show why T is a linear transformation. (8 points)

Name

6) Let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Place each of the following terms in the circles below such that all items in a circle are equivalent. Note that not all circles may be used. (20 points)

- a) T is one-to-one.
- b) T is onto.
- c) The range of T is \mathbb{R}^m .
- d) The columns of *T* are linearly independent.
- e) The columns of *T* are linearly dependent.
- f) The columns of T span \mathbb{R}^m
- g) [T] has full column span.
- h) [T]'s echelon form shows that the corresponding equation has no free variables.
- i) $[T]\vec{x} = \vec{0}$ has exactly one solution.
- j) $[T]\vec{x} = \vec{0}$ has multiple solutions.
- k) $[T]\vec{x} = \vec{b}$ has at most one solution.
- I) $[T]\vec{x} = \vec{b}$ has multiple solutions.

7) Find a matrix in row echelon form that is row equivalent to the matrix below. (8 points)

[2	0	ן1
4	1	2
8	4	4

8) Find a matrix in reduced row echelon form that is row equivalent to the matrix below. (12 points)

[2	0	1]
4	1	2
8	4	4

9) Find the inverse of the matrix below. (10 points)

[1	0	0	1]
2	1	0	1
0	0	9	0
5	0	0	6

10) Solve for \vec{x} . (10 points)

[1	0	0	1]	$\begin{bmatrix} x_1 \end{bmatrix}$		[0]	
2	1	0	1	<i>x</i> ₂	_	1	
0	0	9	0	<i>x</i> ₃	_	2	
5	0	0	6	$\begin{bmatrix} x_4 \end{bmatrix}$		0_	

11) On the graph below, sketch and label the two follow vectors below. (12 points)

12) Which of the following collections of vectors are linearly dependent? Circle them. (8 points)

 $\begin{cases} \begin{bmatrix} 2\\3\\5 \end{bmatrix}, \begin{bmatrix} 4\\6\\10 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \\ \begin{cases} \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 7\\2\\3 \end{bmatrix}, \begin{bmatrix} 9\\2\\3 \end{bmatrix} \\ \begin{cases} \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \\ \begin{cases} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \\ \begin{cases} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \end{cases}$