Name \qquad Solutions \qquad Linear Algebra; Test 1

1) Given the system of equations below, describe the solution set. (Don't find it, just describe it in one English sentence or mathematical expression) (3 points)

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =5 \\
x_{2}+x_{3}+x_{4} & =2 \\
x_{3}+x_{4} & =7
\end{aligned}
$$

With exactly one free variable, this is a \mathbb{R}^{1} space.

2) Given the system of equations below, describe the solution set. (Don't find it, just describe it in one English sentence or mathematical expression) (3 points)

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=5 \\
x_{2}+x_{3}+x_{4}=2
\end{array}
$$

With exactly two free variables, this is a \mathbb{R}^{2} space.

3) Given the system of equations below, describe the solution set. (Don't find it, just describe it in one English sentence or mathematical expression) (3 points)

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=5 \\
x_{2}+x_{3}=2 \\
x_{3}=7
\end{array}
$$

With no free variables, this system has a unique solution.

4) Is $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ a solution to the matrix equation $\left[\begin{array}{llll}2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1\end{array}\right] \vec{x}=\left[\begin{array}{c}10 \\ 5\end{array}\right]$? Why or why not? (3 points)

No:

$$
\left[\begin{array}{llll}
2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2+3+4+5 \\
1+1+1+1
\end{array}\right]=\left[\begin{array}{c}
14 \\
4
\end{array}\right] \neq\left[\begin{array}{c}
10 \\
5
\end{array}\right]
$$

5) Define the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ via $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+y \\ 0\end{array}\right]$. Explain or show why T is a linear transformation. (8 points)
"Easy" way: (using a theorem from class)
T is associated to the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and any such function is a linear transformation.
"Hard" way: (using a definition from class)
$T\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]+\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right)=T\left(\left[\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2}+y_{1}+y_{2} \\ 0\end{array}\right]=\left[\begin{array}{c}x_{1}+y_{1} \\ 0\end{array}\right]+\left[\begin{array}{c}x_{2}+y_{2} \\ 0\end{array}\right]=T\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]\right)+T\left(\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right)$ $T\left(c\left[\begin{array}{l}x \\ y\end{array}\right]\right)=T\left(\left[\begin{array}{l}c x \\ c y\end{array}\right]\right)=\left[\begin{array}{c}c x+c y \\ 0\end{array}\right]=c\left[\begin{array}{c}x+y \\ 0\end{array}\right]=c T\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]\right)$

6) Let T be a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. Place each of the following terms in the circles below such that all items in a circle are equivalent. Note that not all circles may be used. (20 points)
a) T is one-to-one.
b) T is onto.
c) The range of T is \mathbb{R}^{m}.
d) The columns of T are linearly independent.
e) The columns of T are linearly dependent.
f) The columns of T span \mathbb{R}^{m}
g) $[T]$ has full column span.
h) [T]'s echelon form shows that the corresponding equation has no free variables.
i) $[T] \vec{x}=\overrightarrow{0}$ has exactly one solution.
j) $[T] \vec{x}=\overrightarrow{0}$ has multiple solutions.
k) $[T] \vec{x}=\vec{b}$ has at most one solution.
l) $[T] \vec{x}=\vec{b}$ has multiple solutions.

7) Find a matrix in row echelon form that is row equivalent to the matrix below. (8 points)
$\left[\begin{array}{lll}2 & 0 & 1 \\ 4 & 1 & 2 \\ 8 & 4 & 4\end{array}\right]$

$$
\left[\begin{array}{lll}
2 & 0 & 1 \\
4 & 1 & 2 \\
8 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
8 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

8) Find a matrix in reduced row echelon form that is row equivalent to the matrix below. (12 points)

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 0 & 1 \\
4 & 1 & 2 \\
8 & 4 & 4
\end{array}\right]} \\
{\left[\begin{array}{lll}
2 & 0 & 1 \\
4 & 1 & 2 \\
8 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

9) Find the inverse of the matrix below. (10 points)

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 \\
0 & 0 & 9 & 0 \\
5 & 0 & 0 & 6
\end{array}\right]} \\
& {\left[\begin{array}{llll:llll}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 0 & 9 & 0 & 0 & 1 & 0 & 0 \\
5 & 0 & 0 & 6 & 0 & 1 & 0 & 0
\end{array} 0\right.} \\
& \sim\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & \mid & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & \mid & -2 & 1 & 0 \\
0 \\
0 & 0 & 9 & 0 & \mid & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & \mid & -5 & 0 & 0
\end{array} 1\right]\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & \mid & 1 & 0 & 0 \\
0 \\
0 & 1 & 0 & -1 & \mid & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & \mid & 0 & 0 & 1 / 9 \\
0 \\
0 & 0 & 0 & 1 & -5 & 0 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc|cccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -7 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & \mid & 0 & 1 / 9 & 0 \\
0 & 0 & 0 & 1 & -5 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccc:cccc}
1 & 0 & 0 & 0 & 6 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -7 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 / 9 & 0 \\
0 & 0 & 0 & 1 & -5 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thus the inverse matrix is:

$$
\left[\begin{array}{cccc}
6 & 0 & 0 & -1 \\
-7 & 1 & 0 & 1 \\
0 & 0 & 1 / 9 & 0 \\
-5 & 0 & 0 & 1
\end{array}\right]
$$

10) Solve for \vec{x}. (10 points)

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 \\
0 & 0 & 9 & 0 \\
5 & 0 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
6 & 0 & 0 & -1 \\
-7 & 1 & 0 & 1 \\
0 & 0 & 1 / 9 & 0 \\
-5 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 \\
0 & 0 & 9 & 0 \\
5 & 0 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cccc}
6 & 0 & 0 & -1 \\
-7 & 1 & 0 & 1 \\
0 & 0 & 1 / 9 & 0 \\
-5 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
0+0+0+0 \\
0+1+0+0 \\
0+0+2 / 9+0 \\
0+0+0+0
\end{array}\right]} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
2 / 9 \\
0
\end{array}\right]}
\end{gathered}
$$

11) On the graph below, sketch and label the two follow vectors below. (12 points)

$$
\begin{gathered}
\vec{v}_{1}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
\vec{v}_{2}=\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{gathered}
$$

(For \vec{v}_{2}, find it graphically and illustrate what you did)

12) Which of the following collections of vectors are linearly dependent? Circle them. (8 points)

