Name $\qquad$

1) Give a matrix with the following column space: (5 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
6 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right)
$$

2) Give a linear operator whose associated matrix has the following row space: (5 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
6 \\
2
\end{array}\right]^{t},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]^{t}\right\}\right)
$$

3) Give a matrix with the following null space: (5 points)
$\operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 6 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}\right)$
4) Give an example of a homogeneous system of equations in which the associated linear transformation has nontrivial kernel. ( 5 points)
5) Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear operator with trivial kernel. Prove that the columns of [ $T$ ] are linearly independent. (10 points)
6) Find a basis for $\left\{\left[\begin{array}{c}0 \\ 1 \\ a \\ a+b \\ c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$. (5 points)
7) Give an example of a linear operator $T$ such that the associated linear system $[T] \vec{x}=\vec{b}$ has a unique solution for all $\vec{b} \in \mathbb{R}^{3}$. (5 points)
8) Find the null space of $\left[\begin{array}{cc}1 & -5 \\ -3 & 15 \\ 2 & -10\end{array}\right]$. (10 points)
9) Alice is an aspiring linear algebraist. Find a set of three vectors in $\mathbb{R}^{4}$ such that when any one is removed, Alice can find two new vectors to add to the set to make a basis for $\mathbb{R}^{4}$. ( 5 points)
10) If $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{2}\end{array}\right]$, find $\left[T^{-1}\right]$. That is, find the associated matrix of the inverse function. (5 points)
11) A $7 \times 5$ matrix has just 3 linearly dependent rows. How many free variables are there in the associated system of homogenous equations? (10 points)
12) Express 432 different bases for $\mathbb{R}^{4}$. (Hint: Don't try to write them all down) (5 points)
13) Find two examples of dimension 2 spaces. ( 5 points)
14) The graph below illustrates two vectors, $\vec{v}_{1}$ and $\vec{v}_{2}$. The picture illustrates that $T\left(\vec{v}_{1}\right)=\vec{v}_{2}$. Find the associated matrix[T]. (10 points)

15) Find all values of $x$ so that $\operatorname{rank}(A)=2$, when $A=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 3 & 1 & 11 \\ 4 & 3 & x\end{array}\right]$. (10 points)
