Name___ Solutions Linear Algebra; Test 2

1) Give a matrix with the following column space: (5 points)
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There are many possible answers, the simplest is probably:
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2) Give a linear operator whose associated matrix has the following row space: (5 points)
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There are many possible answers. The simplest is probably the linear operator corresponding to (1) 8 ﬂ
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3) Give a matrix with the following null space: (s points)
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There are many possible answers. The simplest is probably:
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4) Give an example of a homogeneous system of equations in which the associated linear
transformation has nontrivial kernel. (5 points)

There are many possible answers. One simple such answer is:
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5) Let T: R™ — R™ be a linear operator with trivial kernel. Prove that the columns of [T] are linearly
independent. (10 points)

Denote the columns of [T] as ¥y, ..., Up,. Assume a,V; + -+ + a, U, = 0. Then as a matrix equation this

means [T]d = O whered = [@1 @ -~ ay]’. Because the kernel is trivial, @ = 0. That is to say,
a, =0,a, =0,...,a, = 0. Hence Uy, ..., 1, are linearly independent. o
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Grading:

10 points if it looks like you know what you’re doing.

8 points if you seem to have an idea, but made some glaring mistakes.
5 points if you’re completely off base but made a reasonable attempt.

...a couple people appear to have memorized a proof for something else. Bad!



|

a,b,c € R } (5 points)
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There are many possible answers. The simplest is probably:
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Note that technically speaking this set is not a subspace of R”; it was graded according to whether or
not your answer was linearly independent and spanned this set.

Note that this problem was re-graded several times. The pink marks are corrections to the red marks,
and the orange marks are corrections to the red and/or pink marks.



7) Give an example of a linear operator T such that the associated linear system [T]X = b has a unique

solution for all b € R3. (s points)

There are many answers. One possible answer is:

T:R3 - R3
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1 -5
8) Find the null space of [—3 15 ] (10 points)

2 =10
1 -5 1 -5
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-5 0

X
0 ] [xﬂ = [0], we find that x, can be free, while x; is five times x,. Hence the null space is:
0 0
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9) Alice is an aspiring linear algebraist. Find a set of three vectors in R* such that when any one is
removed, Alice can find two new vectors to add to the set to make a basis for R*. (5 points)

There are many possible answers. One such answer is:
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X
10)fT ([x;]) = [x1 N xZ], find [T~1]. That is, find the associated matrix of the inverse function. (s points)
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11) A 7 X 5 matrix has just 3 linearly dependent rows. How many free variables are there in the
associated system of homogenous equations? (10 points)

This question was thrown out because it is not well defined: It is not clear what “having 3 linearly
dependent rows” means. The question was intended to say “A 7 X 5 matrix has just 3 linearly

independent rows.”

In that case, the nullity of the matrix would be 2, so there would be two free variables.



12) Express 432 different bases for R*. (Hint: Don’t try to write them all down) (s points)
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13) Find two examples of dimension 2 spaces. (5 points)
There are many such spaces. Two of these spaces are:
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Grading note: Points were deducted if you gave the same space written in two different ways, such as

R? and span ({[ ][, ]})



14) The graph below illustrates two vectors, ¥; and ¥,. The picture illustrates that T (¥;) = ¥,. Find the
associated matrix|[T]. (10 points)
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We must find a 2 X 2 matrix [T] such that: 61
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-1 2 1
15) Find all values of x so that rank(4) = 2, when 4 = [ 3 1 11]. (10 points)
4 3 x

The first two rows are linearly independent. Hence to be rank 2, the third row must be linearly

RN N N

Hence for this matrix to have rank 2, x must be 18.

dependent. Reducing A we find:
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