Name <u>Solutions</u>

1) Give a matrix with the following column space: (5 points)

$$\operatorname{span}\left(\left\{\begin{bmatrix}1\\6\\2\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}\right)$$

There are many possible answers, the simplest is probably:

2) Give a linear operator whose associated matrix has the following row space: (5 points)

$$\operatorname{span}\left(\left\{\begin{bmatrix}1\\6\\2\end{bmatrix}^t,\begin{bmatrix}0\\0\\1\end{bmatrix}^t\right\}\right)$$

There are many possible answers. The simplest is probably the linear operator corresponding to $\begin{bmatrix} 1 & 6 & 2 \\ 0 & 0 & 1 \end{bmatrix}$:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 + 6x_2 + 2x_3\\x_3\end{bmatrix}$$

3) Give a matrix with the following null space: (5 points)

 $span\left(\left\{ \begin{bmatrix} 1\\6\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \right)$

There are many possible answers. The simplest is probably: $\begin{bmatrix} 6 & -1 & 0 \end{bmatrix}$

4) Give an example of a homogeneous system of equations in which the associated linear transformation has nontrivial kernel. (5 points)

There are many possible answers. One simple such answer is:

 $x_1 + x_2 = 0$

5) Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear operator with trivial kernel. Prove that the columns of [T] are linearly independent. (10 points)

Denote the columns of [T] as $\vec{v}_1, \dots, \vec{v}_n$. Assume $a_1\vec{v}_1 + \dots + a_n\vec{v}_n = 0$. Then as a matrix equation this means $[T]\vec{a} = \vec{0}$ where $\vec{a} = [a_1 \quad a_2 \quad \dots \quad a_n]^t$. Because the kernel is trivial, $\vec{a} = \vec{0}$. That is to say, $a_1 = 0, a_2 = 0, \dots, a_n = 0$. Hence $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent. \Box

Grading:

10 points if it looks like you know what you're doing.

8 points if you seem to have an idea, but made some glaring mistakes.

5 points if you're completely off base but made a reasonable attempt.

...a couple people appear to have memorized a proof for something else. Bad!

6) Find a basis for
$$\begin{cases} 0 \\ 1 \\ a \\ a+b \\ c \end{cases}$$
: $a, b, c \in \mathbb{R}$. (5 points)

There are many possible answers. The simplest is probably:

(<mark>ר0</mark> ק		0		ר0	n	
L	1		1		1		
ł	1	,	0	,	0		ł
L	1		1		0		
l	L01		0		1	J	

Note that technically speaking this set is not a subspace of \mathbb{R}^n ; it was graded according to whether or not your answer was linearly independent and spanned this set.

Note that this problem was re-graded several times. The pink marks are corrections to the red marks, and the orange marks are corrections to the red and/or pink marks.

7) Give an example of a linear operator T such that the associated linear system $[T]\vec{x} = \vec{b}$ has a unique solution for all $\vec{b} \in \mathbb{R}^3$. (5 points)

There are many answers. One possible answer is:

8) Find the null space of
$$\begin{bmatrix} 1 & -5 \\ -3 & 15 \\ 2 & -10 \end{bmatrix}$$
. (10 points)
$$\begin{bmatrix} 1 & -5 \\ -3 & 15 \\ 2 & -10 \end{bmatrix} \sim \begin{bmatrix} 1 & -5 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Solving $\begin{bmatrix} 1 & -5\\ 0 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$, we find that x_2 can be free, while x_1 is five times x_2 . Hence the null space is: $\operatorname{span}\left(\{\begin{bmatrix} 5\\ 1\end{bmatrix}\}\right)$

~~~~ ***

9) Alice is an aspiring linear algebraist. Find a set of three vectors in \mathbb{R}^4 such that when any one is removed, Alice can find two new vectors to add to the set to make a basis for \mathbb{R}^4 . (5 points)

There are many possible answers. One such answer is:

([1]		[0]		[0]	h	
	0		1		0		
	0	1	0	'	1	(ſ
	0		0		0	J	

10) If $T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1 + x_2\\x_2\end{bmatrix}$, find $[T^{-1}]$. That is, find the associated matrix of the inverse function. (5 points)

$$[T] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & \vdots & 1 & 0 \\ 0 & 1 & \vdots & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & \vdots & 1 & -1 \\ 0 & 1 & \vdots & 0 & 1 \end{bmatrix}$$
$$[T^{-1}] = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

11) A 7 \times 5 matrix has just 3 linearly dependent rows. How many free variables are there in the associated system of homogenous equations? (10 points)

This question was thrown out because it is not well defined: It is not clear what "having 3 linearly dependent rows" means. The question was intended to say "A 7×5 matrix has just 3 linearly independent rows."

In that case, the nullity of the matrix would be 2, so there would be two free variables.

12) Express 432 different bases for \mathbb{R}^4 . (Hint: Don't try to write them all down) (5 points) $\begin{pmatrix} a \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 0 \\ a \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ a \\ 0 \\ a \end{bmatrix}$ for a = 1, ..., 432

13) Find two examples of dimension 2 spaces. (5 points) There are many such spaces. Two of these spaces are:

Grading note: Points were deducted if you gave the same space written in two different ways, such as \mathbb{R}^2 and span $\left(\left\{\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\17\end{bmatrix}\right\}\right)$

14) The graph below illustrates two vectors, \vec{v}_1 and \vec{v}_2 . The picture illustrates that $T(\vec{v}_1) = \vec{v}_2$. Find the associated matrix[T]. (10 points)

15) Find all values of x so that rank(A) = 2, when $A = \begin{bmatrix} -1 & 2 & 1 \\ 3 & 1 & 11 \\ 4 & 3 & x \end{bmatrix}$. (10 points)

The first two rows are linearly independent. Hence to be rank 2, the third row must be linearly dependent. Reducing A we find:

$$\begin{bmatrix} -1 & 2 & 1 \\ 3 & 1 & 11 \\ 4 & 3 & x \end{bmatrix} \sim \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & x - 18 \end{bmatrix}$$

Hence for this matrix to have rank 2, *x* must be 18.

