Name \qquad Solutions \qquad
For problems 1-4 use the augmented matrix below.

$$
\left[\begin{array}{lllll|l}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & \mid \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

1) What is the dimension of the solution set?

2 , as there are two free variables and the system is consistent.
2) Write the system as a matrix equation.

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
$$

3) Write the system as a system of linear equations.

$$
\begin{array}{r}
x_{1}+2 x_{2} \quad+x_{5}=0 \\
x_{3} \quad+x_{5}=2 \\
x_{4}+x_{5}=0
\end{array}
$$

4) Find the solution set.

The system is already in echelon form, so we see immediately that x_{2} and x_{5} are free variables. (They correspond to columns that do not have a pivot).

Then solve for the others, in reverse order: x_{4}, then x_{3}, then x_{1}. Place the solutions into a column vector:

$$
\left[\begin{array}{c}
-2 x_{2}-x_{5} \\
x_{2} \\
2-x_{5} \\
-x_{5} \\
x_{5}
\end{array}\right]
$$

Then to get the solution set we place this into a set using proper set notation:

$$
\left\{\left[\begin{array}{c}
-2 x_{2}-x_{5} \\
x_{2} \\
2-x_{5} \\
-x_{5} \\
x_{5}
\end{array}\right]: x_{2}, x_{5} \in \mathbb{R}\right\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right] x_{2}+\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right] x_{5}: x_{2}, x_{5} \in \mathbb{R}\right\}
$$

5) Row reduce the matrix below. That is, find the matrix in reduced row echelon form that is row equivalent to it.

