Name \qquad Solutions \qquad

1) Find the following:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
5 & 6 & 7
\end{array}\right]\left[\begin{array}{ll}
2 & \pi \\
0 & 0 \\
1 & 3
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
5 & 6 & 7
\end{array}\right]\left[\begin{array}{ll}
2 & \pi \\
0 & 0 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
2 & \pi \\
0 & 0 \\
5 \cdot 2+7 & 5 \cdot \pi+7 \cdot 3
\end{array}\right]=\left[\begin{array}{cc}
2 & \pi \\
0 & 0 \\
17 & 21+5 \pi
\end{array}\right]}
\end{gathered}
$$

2) Find the following:

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 627 \\
\pi & 16 & 1 & 1 \\
2 \pi & 32 & 2 & 3
\end{array}\right| \\
&\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 627 \\
\pi & 16 & 1 & 1 \\
2 \pi & 32 & 2 & 3
\end{array}\right|=1 \cdot\left|\begin{array}{ccc}
2 & 0 & 627 \\
16 & 1 & 1 \\
32 & 2 & 3
\end{array}\right|+0+0+0 \\
&=2 \cdot\left|\begin{array}{cc}
1 & 1 \\
2 & 3
\end{array}\right|+0+627 \cdot\left|\begin{array}{cc}
16 & 1 \\
32 & 2
\end{array}\right| \\
&=2 \cdot(3-2)+627 \cdot 0 \\
&=2
\end{aligned}
\end{aligned}
$$

3) For what values of x is the matrix below NOT invertible?

$$
\left[\begin{array}{cc}
-x & 2 \\
1 & 1-x
\end{array}\right]
$$

Taking the determinant we get: $\left|\begin{array}{cc}-x & 2 \\ 1 & 1-x\end{array}\right|=-x \cdot(1-x)-2=x^{2}-x-2=(x-2)(x+1)$

The matrix is invertible if and only if the determinant is not zero. Hence it is not invertible if and only if the determinant is zero. This occurs when $x=2$ or $x=-1$.

