Name \qquad Solutions \qquad

1) Find an eigenvector for the matrix below.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 3 \\
0 & 2 & 4
\end{array}\right]
$$

First we find the eigenvalues by finding the determinant of $A-\lambda I_{3}$:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 3 \\
0 & 2 & 4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
1 & 2-\lambda & 3 \\
0 & 2 & 4-\lambda
\end{array}\right]} \\
& \left.\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
1 & 2-\lambda & 3 \\
0 & 2 & 4-\lambda
\end{array}\right|=(1-\lambda) \cdot[(2-\lambda)(4-\lambda)-6)\right]
\end{aligned}
$$

I see immediately that 1 is an eigenvalue because 1 is a solution to the equation below, so I don't need to sort out the rest.

$$
(1-\lambda) \cdot[(2-\lambda)(4-\lambda)-6)]
$$

Using this eigenvalue, we find the matrix $A-1 \cdot I_{3}$:

$$
\left[\begin{array}{ccc}
1-1 & 0 & 0 \\
1 & 2-1 & 3 \\
0 & 2 & 4-1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 3 \\
0 & 2 & 3
\end{array}\right]
$$

Anything in the null space of this matrix is an eigenvector. It's simple enough we might be able to find such a vector by inspection. But if it's not we can row reduce it:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 3 \\
0 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & \frac{3}{2} \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right]
$$

Now we see the two equations below:

$$
\begin{aligned}
& x_{1}+\frac{3}{2} x_{3}=0 \\
& x_{2}+\frac{3}{2} x_{2}=0
\end{aligned}
$$

Noting that x_{2} is a free variable, we choose $x_{2}=2$ and find the eigenvector below.

$$
\vec{v}=\left[\begin{array}{c}
-3 \\
-3 \\
2
\end{array}\right]
$$

2) How many eigenvalues does the matrix below have? Be as thorough as possible without actually finding the eigenvalues.

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

This matrix has 5 eigenvalues including multiplicity, because it is a 5×5 matrix. We can see this because the equation $\left|A-\lambda I_{5}\right|=0$ is a $5^{\text {th }}$ degree polynomial in λ.
(Future reference: Soon we'll call this equation the characteristic equation and this polynomial the characteristic polynomial)

