1) Find an eigenvector for the matrix below.

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 3 \\ 0 & 2 & 4 \end{bmatrix}$$

First we find the eigenvalues by finding the determinant of $A - \lambda I_3$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 3 \\ 0 & 2 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 3 \\ 0 & 2 & 4 - \lambda \end{bmatrix}$$
$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 3 \\ 0 & 2 & 4 - \lambda \end{vmatrix} = (1 - \lambda) \cdot [(2 - \lambda)(4 - \lambda) - 6)]$$

I see immediately that 1 is an eigenvalue because 1 is a solution to the equation below, so I don't need to sort out the rest.

$$(1-\lambda) \cdot [(2-\lambda)(4-\lambda)-6)]$$

Using this eigenvalue, we find the matrix $A - 1 \cdot I_3$:

[1 – 1	0	0		[0]	0	0]
$\begin{bmatrix} 1-1\\ 1\\ 0 \end{bmatrix}$	2 – 1	3	=	1	1	3
L O	2	4 – 1		LO	2	3

Anything in the null space of this matrix is an eigenvector. It's simple enough we might be able to find such a vector by inspection. But if it's not we can row reduce it:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 3 \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{3}{2} \\ & & \frac{3}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Now we see the two equations below:

$$x_1 + \frac{3}{2}x_3 = 0$$
$$x_2 + \frac{3}{2}x_2 = 0$$

Noting that x_2 is a free variable, we choose $x_2 = 2$ and find the eigenvector below.

$$\vec{v} = \begin{bmatrix} -3\\ -3\\ 2 \end{bmatrix}$$

2) How many eigenvalues does the matrix below have? Be as thorough as possible without actually finding the eigenvalues.

r1	1	1	1	ן1
2	2	2	2	2
1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
4	4	4	4	4
L5	5	5	5	5J

This matrix has 5 eigenvalues including multiplicity, because it is a 5 × 5 matrix. We can see this because the equation $|A - \lambda I_5| = 0$ is a 5th degree polynomial in λ .

(Future reference: Soon we'll call this equation the characteristic equation and this polynomial the characteristic polynomial)