Name \qquad Solutions \qquad

Let A be a 9×9 matrix with 3 distinct eigenvalues.
$\lambda_{1}=5$ has only one linearly independent eigenvector \vec{v}_{1}.
$\lambda_{2}=12$ has two linearly independent eigenvectors \vec{w}_{1} and \vec{w}_{2}.
$\lambda_{3}=27$ and no information about its eigenvectors is given.

1) What is the eigenspace corresponding to λ_{1} ?

$$
\operatorname{span}\left(\vec{v}_{1}\right)=\left\{c \vec{v}_{1}: c \in \mathbb{R}\right\}=\operatorname{null}\left(A-5 I_{9}\right)
$$

(The first answer above is the simplest and most straightforward)
2) What are possible values for the multiplicity of λ_{2} ?
$2,3,4,5,6,7$

It cannot be 1 because it has two linearly independent eigenvectors. It cannot be 8 or 9 because two roots of the characteristic polynomial are taken up by λ_{1} and λ_{3}.
3) How many linearly independent eigenvectors can there be for λ_{3} ?

$$
1,2,3,4,5,6
$$

It cannot be 0 because λ_{3} is an eigenvalue and thus has an eigenvector.
It cannot be 7,8 , or 9 because three dimensions are taken up by $\vec{v}_{1}, \vec{w}_{1}, \vec{w}_{2}$.
4) What are possible values for $|A|$?

$$
|A| \neq 0
$$

It cannot be zero because 0 is not an eigenvalue. I do wonder if we can say any more. Beyond the scope of this course: my gut feeling tells me that knowing the eigenvalues should tell us _something_ about $|A|$, but I haven't a clue what can actually be said. The problem is that $A-\lambda I_{9}$ involves addition/subtraction of matrices, which tends to destroy any information about the determinant of the constituent matrices.
5) What is the leading term in the characteristic polynomial of A ? That is, when written in the standard order, what is the first term in $A-x I_{9}$?

$$
-x^{9}
$$

The variable is x because that was the variable used in $A-x I_{9}$.
The exponent is 9 because it is a 9×9 matrix, and the $x^{\prime} s$ appear on the diagonal and nowhere else.
The coefficient is -1 because all nine factors with an x look like " $(\square-x)$ "

