Name \qquad

1) Write the vector equation below as a system of linear equations. (4 points)

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] x_{2}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]
$$

2) Determine whether or not the set below is a subspace of \mathbb{R}^{5}. If it is, find its dimension. Justify your answer. (8 points)

$$
\left\{\left[\begin{array}{c}
a \\
a+b \\
1+a+b+c \\
0 \\
1
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

3) A linear transformation is given below. Determine whether or not it is onto. Justify your answer. (8 points)

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{2} \\
4 x_{2} \\
x_{1}+3 x_{3} \\
x_{1}+x_{2}+x_{3} \\
6 x_{2}+7 x_{3}
\end{array}\right]
$$

4) Determine which of the spaces below have dimension 2 . Circle them. (6 points)
$\left.\left.\left.\begin{array}{ll}\operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}\right) & \operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 4\end{array}\right]\right\}\right) \\ \operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right\}\right) & \operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]\right\}\right) \\ 3\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right\}\right) \quad \operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right]\right\}\right)$

5) Illustrate $\operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 8\end{array}\right]\right\}\right)$ on the axis below. (7 points)

6) You know that the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{7}$ is one-to-one. What else can you say? (4 points per insightful statement; 1 point per obvious statement; every incorrect statement nullifies a correct statement. 20 points maximum)

For the problems on this page, use the basis for \mathbb{R}^{2} below. Do not change the order of the vectors.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

8) Find the vector $\left[\begin{array}{c}4 \\ 10\end{array}\right]$ in terms of \mathcal{B}. (10 points)
9) Graphically illustrate your answer to the above question. (10 points)

Use the matrix below for the problems on this page.

$$
A=\left[\begin{array}{lllc}
3 & 6 & 3 & 12 \\
1 & 2 & 2 & 7 \\
0 & 0 & 2 & 6
\end{array}\right]
$$

10) Find the row reduced echelon form of A. (7 points)
11) Find the null space of A. (5 points)
12) A certain corporation has a vector \vec{b} they are unwilling to share. But they have announced that $\vec{x}=\left[\begin{array}{c}3 \\ 6.2 \\ 17 \\ 9\end{array}\right]$ is a solution to $A \vec{x}=\vec{b}$. Find five more solutions to $A \vec{x}=\vec{b}$. (8 points)
