Name \qquad Solutions \qquad

1) Find the following product:

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & \pi & x \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & \pi & x \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 6+4 \\
x & 3 \pi & x \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 10 \\
x & 3 \pi & x \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

2) Find the determinant of the matrix below.

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 1
\end{array}\right]=1 \cdot\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3 & 0 & 1
\end{array}\right]=1 \cdot 1 \cdot\left[\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 3 & 0 & 1
\end{array}\right]} \\
=1 \cdot 1 \cdot 2 \cdot\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right]=1 \cdot 1 \cdot 2 \cdot 1 \cdot\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]=1 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot\left[\begin{array}{cc}
1 & 1 \\
3 & 1
\end{array}\right]
\end{gathered}
$$

In each case we chose to expand on the blue row or column.
3) Solve the matrix equation below for $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. You do not need to simplify your answer.

$$
\left[\begin{array}{cc}
71 & 70 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

First note that $\left[\begin{array}{cc}71 & 70 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & -70 \\ -1 & 71\end{array}\right]$ by using the formula. (The determinant is 1).

Thus we apply the multiply by this inverse matrix on both sides of the equation:

$$
\left[\begin{array}{cc}
1 & -70 \\
-1 & 71
\end{array}\right]\left[\begin{array}{cc}
71 & 70 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -70 \\
-1 & 71
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

This gives:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -70 \\
-1 & 71
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
b_{1}-70 b_{2} \\
-b_{1}+71 b_{2}
\end{array}\right]
$$

