Name \qquad Solutions \qquad Linear Algebra, Quiz 8

1) Below are two vectors. Determine whether or not they are orthogonal. (2 points)

$$
\vec{u}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
-3 \\
2 \\
1 \\
-4
\end{array}\right]
$$

Yes these are orthogonal because their dot product is zero:

$$
(1)(-3)+0+(3)(1)+0=-3+3=0
$$

2) Find $\left[\begin{array}{llc}0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right]^{50}$. (8 points)

$$
\lambda=0:\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] . \text { So } \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
\lambda=1:\left[\begin{array}{ccc}
0-1 & 0 & 1 \\
0 & 1-1 & 2 \\
0 & 0 & -1-1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 2 \\
0 & 0 & -2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] . \text { So } \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

$$
\lambda=-1:\left[\begin{array}{ccc}
0+1 & 0 & 1 \\
0 & 1+1 & 2 \\
0 & 0 & -1+1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] . \text { So } \vec{v}_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]^{50}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]^{50}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]^{-1}
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]^{50}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Here the center matrix is an elementary matrix

$$
=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\text { that performs the operation } R_{1} \rightarrow 0 \cdot R_{1} \text { to the }
$$

matrix to the right of it.

