Name \qquad

Below is a basis. Find an orthogonal basis that spans the same space.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

We'll take \vec{v}_{1} as the first vector: $\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$.

As \vec{v}_{2} we'll start with $\left[\begin{array}{l}0 \\ 2 \\ 2 \\ 0\end{array}\right]$, but we want only the information that is orthogonal to \vec{v}_{1} :

$$
\left[\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right]
$$

Then for \vec{v}_{3} we'll start with $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$, but we want only the information that is orthogonal to both \vec{v}_{1} and \vec{v}_{2} :

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{1+1}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{-1+2+1}{1+4+1}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right]} \\
=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right] \\
=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 / 3 \\
-2 / 3 \\
-1 / 3 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
-1 / 3 \\
1
\end{array}\right]
\end{gathered}
$$

Hence the orthogonal basis is:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
-1 / 3 \\
1
\end{array}\right]\right\}
$$

