\qquad

1) Why is the set below not a subspace of \mathbb{R}^{4} ? (7 points)

$$
\left\{\left[\begin{array}{l}
a \\
b \\
c \\
0
\end{array}\right]: a, b, c \in \mathbb{R}, c \geq 0\right\}
$$

2) On the axis below, graph $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}\right)$ where $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}6 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}9 \\ 3\end{array}\right] \cdot$. (13 points)

3) Calculate the following: (5 points)
$\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0 \\ 3\end{array}\right]+7\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]$
4) Find the null space of the following matrix. (10 points)

5) Write the following matrix equation as a system of linear equations. (5 points)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

6) On the plane below, graphically illustrate the solution to the following system: (10 points)

$$
\begin{aligned}
& y-x=0 \\
& y-2 x=-2
\end{aligned}
$$

7) Is $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ in the span of the three vectors $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$? Why or why not? (10 points)
8) Given the matrix equation below, identify which variables are free and which variables are leading. (5 points)

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 3 & 0 \\
0 & 1 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]
$$

9) Which of the following are bases for \mathbb{R}^{2} ? Circle them. (4 points)

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

10) Is the following set of vectors linearly dependent or linearly independent? Why? (11 points)

$$
\left\{\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right]\right\}
$$

11) Reduce the following matrix to row reduced echelon form. (20 points)
$\left[\begin{array}{ccccc}2 & 6 & 0 & 4 & 0 \\ 1 & 3 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 8 & 0 & 15 & 363 & 20\end{array}\right]$
