Name <u>Solutions</u>

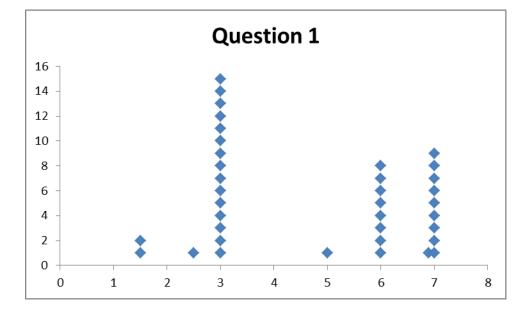
E 0 7

1) Why is the set below not a subspace of \mathbb{R}^4 ? (7 points)

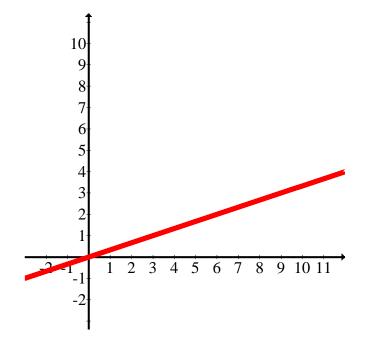
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix} : a, b, c \in \mathbb{R}, c \ge 0 \right\}$$

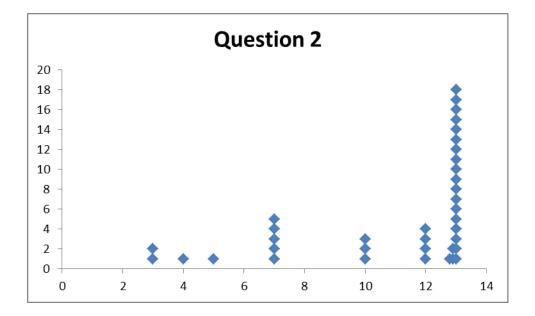
It's not closed under scalar multiplication. In particular this set con

tains
$$\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$
, but not $-1 \cdot \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\-1\\0 \end{bmatrix}$.



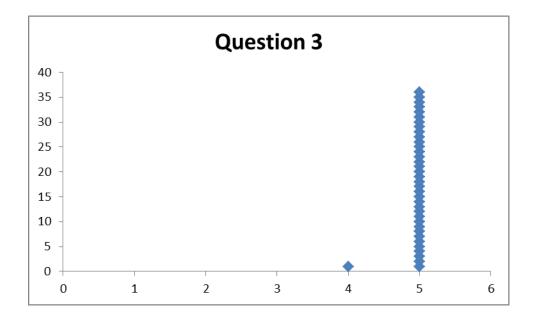
2) On the axis below, graph span($\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$) where $\vec{v}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 6\\2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 9\\3 \end{bmatrix}$. (13 points)





3) Calculate the following: (5 points)

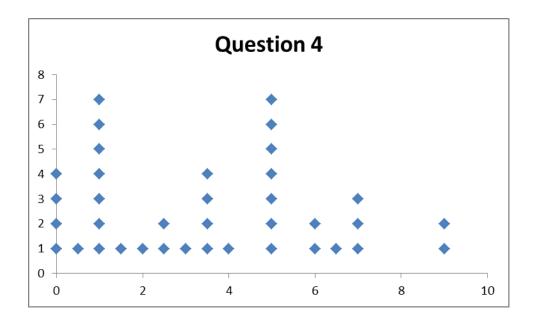
$$\begin{bmatrix} 1\\2\\0\\0\\3 \end{bmatrix} + 7\begin{bmatrix} 0\\2\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\2\\0\\1\\2 \end{bmatrix} + \begin{bmatrix} 0\\0\\14\\0\\7 \end{bmatrix} = \begin{bmatrix} 1\\2\\14\\0\\10 \end{bmatrix}$$



4) Find the null space of the following matrix. (10 points)

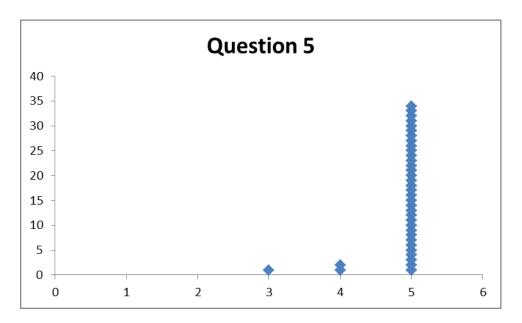
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} : \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} -2x_4 \\ x_2 \\ -9x_4 \\ x_4 \end{bmatrix} : x_2, x_4 \in \mathbb{R} \right\} = \left\{ s_1 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ 0 \\ -9 \\ 1 \end{bmatrix} : s_1, s_2 \in \mathbb{R} \right\}$$

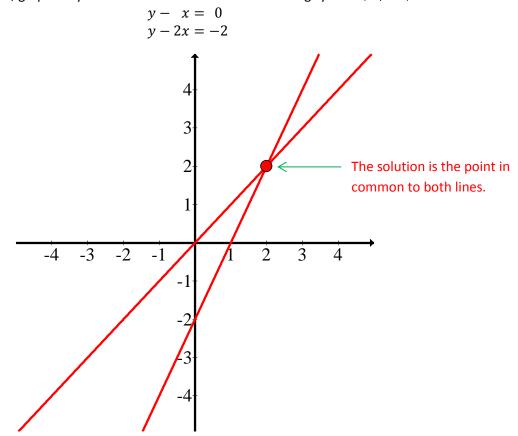


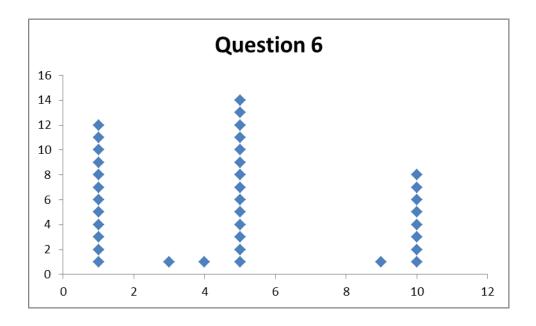
5) Write the following matrix equation as a system of linear equations. (5 points)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$
$$x + 2y = 7$$
$$3x + 4x = 8$$
$$5x + 6y = 9$$



6) On the plane below, graphically illustrate the solution to the following system: (10 points)





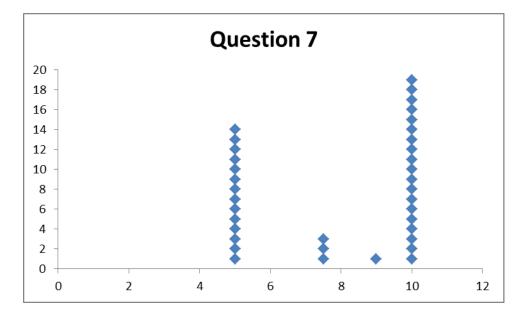
7) Is
$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
 in the span of the three vectors $\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$? Why or why not? (10 points)

Yes, as illustrated below.

[1]		[1]		[0]		[0]	
2	=	0	+ 2	1	- 3	0	
L0-		1		1		$\lfloor 1 \rfloor$	

You could also get this by row reducing the following matrix, and the noting that the three vectors must span all of \mathbb{R}^3 .

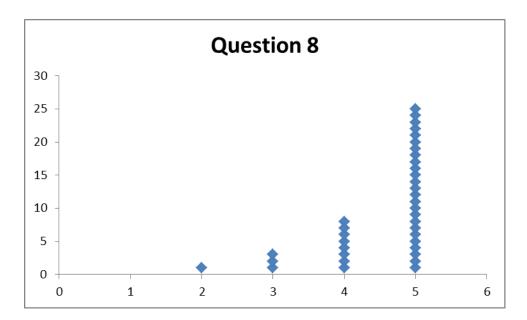
[1	0	0		[1	0	0]	
0	1	0	~	0	0 1 0	0	
1	1	1		0	0	1	



8) Given the matrix equation below, identify which variables are free and which variables are leading. (5 points)

$$\begin{bmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$$

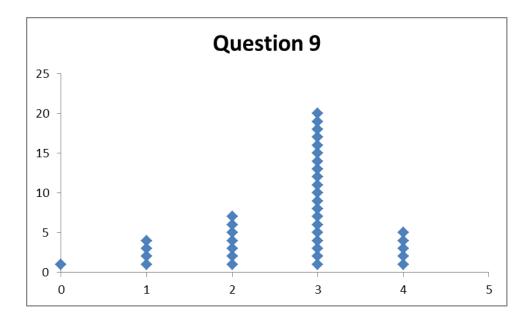
The leading variables are x_1, x_2 and x_5 . The free variables are x_3 and x_4 .



9) Which of the following are bases for \mathbb{R}^2 ? Circle them. (4 points)

$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\2\\1\\4 \end{bmatrix}, \begin{bmatrix} 3\\4\\1\\6 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} a\\b\\1 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

The second one is not a basis for \mathbb{R}^2 because the vectors are in \mathbb{R}^3 . The third one is not a basis for anything because they are linearly dependent. The fourth one is not a basis for anything because they are linearly dependent.



10) Is the following set of vectors linearly dependent or linearly independent? Why? (11 points)

([2]		[0]		[1])
}	0	,	4	,	1 0 6	{
(1		6)

These vectors are linearly independent. This can be seen by trying to solve the vector equation below.

	[2]		[0]		[1]		[0]	
<i>x</i> ₁	0	+ <i>x</i> ₂	4	$+ x_{3}$	0	=	0	
	0		1		6		0	

By row reducing the following matrix we see that this equation has only the trivial solution.

2	0	1]	[2	0	1		[2	0	0]
0	4	$\begin{bmatrix} 1 \\ 0 \\ 6 \end{bmatrix} $	- 0	4	0	~	0	4	0
0	1	6	LO	0	6		0	0	6

