Name \qquad Solutions \qquad Linear Algebra, Test 1

1) Why is the set below not a subspace of \mathbb{R}^{4} ? (7 points)

$$
\left\{\left[\begin{array}{l}
a \\
b \\
c \\
0
\end{array}\right]: a, b, c \in \mathbb{R}, c \geq 0\right\}
$$

It's not closed under scalar multiplication. In particular this set contains $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$, but not $-1 \cdot\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right]$.

2) On the axis below, graph $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}\right)$ where $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}6 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}9 \\ 3\end{array}\right]$. (13 points)

3) Calculate the following: (5 points)
$\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0 \\ 3\end{array}\right]+7\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]$

$$
\left[\begin{array}{l}
1 \\
2 \\
0 \\
0 \\
3
\end{array}\right]+7\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0 \\
3
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
14 \\
0 \\
7
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
14 \\
0 \\
10
\end{array}\right]
$$

4) Find the null space of the following matrix. (10 points)
$\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]:\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 9 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}=\left\{\left[\begin{array}{c}
-2 x_{4} \\
x_{2} \\
-9 x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{s_{1}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+s_{2}\left[\begin{array}{c}
-2 \\
0 \\
-9 \\
1
\end{array}\right]: s_{1}, s_{2} \in \mathbb{R}\right\}
$$

Question 4

5) Write the following matrix equation as a system of linear equations. (5 points)

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right] \\
x+2 y & =7 \\
3 x+4 x & =8 \\
5 x+6 y & =9
\end{aligned}
$$

6) On the plane below, graphically illustrate the solution to the following system: (10 points)

$$
\begin{aligned}
& y-x=0 \\
& y-2 x=-2
\end{aligned}
$$

7) Is $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ in the span of the three vectors $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$? Why or why not? (10 points)

Yes, as illustrated below.
$\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]-3\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

You could also get this by row reducing the following matrix, and the noting that the three vectors must span all of \mathbb{R}^{3}.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Question 7

8) Given the matrix equation below, identify which variables are free and which variables are leading. (5 points)

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 3 & 0 \\
0 & 1 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]
$$

The leading variables are x_{1}, x_{2} and x_{5}.
The free variables are x_{3} and x_{4}.

Question 8

9) Which of the following are bases for \mathbb{R}^{2} ? Circle them. (4 points)

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

The second one is not a basis for \mathbb{R}^{2} because the vectors are in \mathbb{R}^{3}.
The third one is not a basis for anything because they are linearly dependent.
The fourth one is not a basis for anything because they are linearly dependent.

10) Is the following set of vectors linearly dependent or linearly independent? Why? (11 points)

$$
\left\{\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right]\right\}
$$

These vectors are linearly independent. This can be seen by trying to solve the vector equation below.

$$
x_{1}\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By row reducing the following matrix we see that this equation has only the trivial solution.

$$
\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 4 & 0 \\
0 & 1 & 6
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

