Name \qquad Linear Algebra, Test 2

Throughout the test simplify all answers except where stated otherwise. For questions in which the answer is a single number, word, etc, show work or provide an explanation for partial credit; otherwise no credit will be given for incorrect responses.

1) Determine whether or not an inverse exists for the matrix shown below. (5 points)
$\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 2 \\ 3 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1\end{array}\right]$
2) Find the inverse of the matrix shown below. (15 points)
$\left[\begin{array}{lll}1 & 2 & 0 \\ 1 & 3 & 0 \\ 0 & 7 & 8\end{array}\right]$

$$
B_{1}=\left\{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
6 \\
0
\end{array}\right]\right\}, B_{2}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
8
\end{array}\right]\right\}
$$

3) Using the bases above, write the vector below in terms of basis B_{2}. You do not need to simplify your answer. (15 points)

$$
\vec{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]_{B_{1}}
$$

4) A 10×10 matrix has matrix has the following eigenvalues. What can you say about the number of linearly independent eigenvectors? (5 points)

$$
\begin{gathered}
\lambda_{1}=2 \text { with multiplicity } 4 . \\
\lambda_{2}=1 \text { with multiplicity } 2 . \\
\lambda_{3}=0 \text { with multiplicity } 1 . \\
\lambda_{4}=\sqrt{\pi} \text { with multiplicity } 1 . \\
\lambda_{5}=e^{\pi} \text { with multiplicity unknown. }
\end{gathered}
$$

5) Find the column space of the matrix below. (5 points)

$$
\left[\begin{array}{llll}
2 & 3 & 5 & 7 \\
1 & 3 & 4 & 9
\end{array}\right]
$$

6) $T: \mathbb{R}^{12} \rightarrow \mathbb{R}^{17}$ is a linear operator. It is known that there are at least 6 linearly independent vectors not in the range of T. What can you say about the solution set of the following equation? (15 points)

$$
T(\vec{x})=\overrightarrow{0}
$$

7) Find all the eigenspaces of the matrix $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & 2\end{array}\right]$. (20 points)
8) A $n \times n$ matrix is known to have an eigenvalue of 0 . What else can you say? 2 points for each correct statement, -2 points for each incorrect statement. (10 points maximum)
9) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear operator. It is known that $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of T, but $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is not an eigenvector of T. Illustrate this on the graph below by drawing two vectors: one that could be $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$, and one that could be $T\left(\left[\begin{array}{l}4 \\ 2\end{array}\right]\right)$. Be sure to label which is which.

