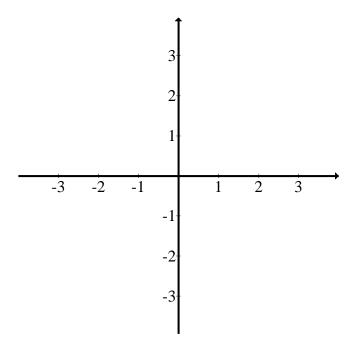

Throughout the test simplify all answers except where stated otherwise. For questions in which the answer is a single number, word, etc, be sure to show your work or provide an explanation.

Let $\vec{v} = \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 0\\3\\4\\1 \end{bmatrix}$

1) Find $\vec{v} \cdot \vec{w}$. (4 points)

2) Find $\|\vec{v}\|$. (5 points)

3) Find the angle between \vec{v} and \vec{w} . No need to simplify your answer. (4 points)


5) Diagonalize the matrix below. (20 points)

[1	0	0	0]
0	1	0	0
1 0 0 0	0	1	0 1 1
0	0	1	1

6) Find an orthogonal basis for the space below. (10 points)

	/([0]		[0]		[0])/	
span	$\left \right $	$\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$,	1	,	2	{ }	
	(-1		1		2)/	

7) Illustrate the orthogonality between (a) the space spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and (b) a vector of your choice that is orthogonal to (a). (10 points)

8) Find an orthogonal basis for \mathbb{R}^{77} . (5 points)

9) Determine whether or not the matrix below is diagonalizable. Justify your answer. (5 points)

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

10) Determine whether or not the matrix below exists. Justify your answer. (5 points)

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{50}$

11) Determine whether or not an orthogonal basis exists for the space below. Justify your answer. (5 points)

 $\operatorname{span}\left(\left\{\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}6\\4\\7\end{bmatrix},\begin{bmatrix}11\\2\\3\end{bmatrix}\right\}\right)$

12) Find the orthogonal complement of span $\left(\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\} \right)$. (8 points)

13) Express the vector
$$\begin{bmatrix} 1\\2\\3\\-1 \end{bmatrix}$$
 in terms of the basis $\{\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4\} = \left\{ \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$. (12 points)

(This page intentionally left blank. Work here will not be counted unless explicitly referenced earlier)