Name \qquad Quiz 2

1) Perform row operations to find a lower triangular matrix that is row equivalent to the matrix below.

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
-4 & 5 & 10 \\
4 & 1 & 2
\end{array}\right]
$$

We perform the operation $R_{2} \rightarrow R_{2}-5 R_{3}$:

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
-24 & 0 & 0 \\
4 & 1 & 2
\end{array}\right]
$$

2) Find the inverse of the product of matrices below. If you can express your answer as a product of matrices, do so. If you're unable to do so, you will probably run out of time on this quiz before you're done multiplying and row reducing.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 / 5
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Notice that this is a product of elementary matrices, which are easy to invert themselves. Also recall that the inverse of a product $A B$ is the product of the inverses $B^{-1} A^{-1}$. Applying these two ideas we get:

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 5
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

