Name \qquad

1) Determine whether or not the vectors below are linearly independent. If they are not linearly independent, find a largest subset of vectors that is linearly independent. Justify your answer.

$$
\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 4 & 4 \\
2 & 1 & 7
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The vectors are linearly independent, as seen from the fact that the corresponding matrix when row reduced has a pivot in each of their columns.
2) Determine whether or not the vectors below are linearly independent. If they are not linearly independent, find a largest subset of vectors that is linearly independent. Justify your answer.

The vectors are linearly dependent, as seen from the fact that the corresponding matrix when row reduced does not have a pivot in each of their columns. However, if we choose vectors 1, 2, and 4, we get a linearly independent collection:

$$
\left[\begin{array}{c}
4 \\
-2 \\
5 \\
-5
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
5 \\
-4
\end{array}\right],\left[\begin{array}{l}
1 \\
8 \\
3 \\
3
\end{array}\right]
$$

