1) Given the basis *B*, below, for \mathbb{R}^3 and the vector \vec{x} , find a formula for \vec{x} in that basis: $[\vec{x}]_B$

$$B = \left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\4\\1 \end{bmatrix}, \begin{bmatrix} 2\\4\\7 \end{bmatrix} \right\} \quad \vec{x} = \begin{bmatrix} 2\\5\\7 \end{bmatrix}$$

2) Given the bases, B_1 and B_2 , below for \mathbb{R}^3 and the vector \vec{x} , find a formula for \vec{x} in the basis B_2 : $[\vec{x}]_{B_2}$

$$B_{1} = \left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\4\\1 \end{bmatrix}, \begin{bmatrix} 2\\4\\7 \end{bmatrix} \right\} \quad B_{2} = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\7\\0 \end{bmatrix} \right\} \quad \vec{x} = \begin{bmatrix} 2\\5\\7 \end{bmatrix}_{B_{1}}$$

3) Suppose the matrix A has size 5×13 . That is, 5 rows and 13 columns. It is known that the equation $A\vec{x} = \vec{0}$ has multiple solutions, but that $A\vec{x} = \begin{bmatrix} 1 & 2 & 3 & 3 & 1 \end{bmatrix}^T$ has no solutions. Find the *smallest* possible dimension the null space of A could have.