\qquad

1) Given the basis B, below, for \mathbb{R}^{3} and the vector \vec{x}, find a formula for \vec{x} in that basis: $[\vec{x}]_{B}$

$$
\begin{gathered}
B=\left\{\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right]\right\} \quad \vec{x}=\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right] \\
{[I]_{B}^{S}=\left[\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 4 & 4 \\
2 & 1 & 7
\end{array}\right]} \\
{\left[\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 4 & 4 \\
2 & 1 & 7
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right]}
\end{gathered}
$$

2) Given the bases, B_{1} and B_{2}, below for \mathbb{R}^{3} and the vector \vec{x}, find a formula for \vec{x} in the basis $B_{2}:[\vec{x}]_{B_{2}}$

$$
\begin{gathered}
B_{1}=\left\{\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right]\right\} \quad B_{2}=\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
7 \\
0
\end{array}\right]\right\} \quad \vec{x}=\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right]_{B_{1}} \\
{[I]_{B_{1}}^{S}=\left[\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 4 & 4 \\
2 & 1 & 7
\end{array}\right]} \\
{[I]_{B_{2}}^{S}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 7 \\
2 & 3 & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 7 \\
2 & 3 & 0
\end{array}\right]^{-1}\left[\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 4 & 4 \\
2 & 1 & 7
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right]}
\end{gathered}
$$

3) Suppose the matrix A has size 5×13. That is, 5 rows and 13 columns. It is known that the equation $A \vec{x}=\overrightarrow{0}$ has multiple solutions, but that $A \vec{x}=\left[\begin{array}{lllll}1 & 2 & 3 & 3 & 1\end{array}\right]^{T}$ has no solutions. Find the smallest possible dimension the null space of A could have.

Each free variable in the equation $A \vec{x}=\overrightarrow{0}$ corresponds to a dimension in the null space. There are 13 columns, so there are potentially as many as 13 free variables. But there could be as few as $13-5=8$, if there is a pivot in every row.

However, because there is a vector \vec{b} such that $A \vec{x}=\vec{b}$ has no solutions, we know that at least one row is missing a pivot. Hence there could be as few as 13-4=9)ree variables. This is the smallest possible dimension of the null space, and is realized with a matrix such as the one below.

$$
\left[\begin{array}{lllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Half credit: a number that makes sense, but is wrong. ($8,10,11,12,13$)
Third credit: a number that isn't remotely possible, but is still a number. ($0,1,2,3,4,5,6,7$)
No credit: Wrong type of answer: Something that isn't a whole number.

Note that the information " $A \vec{x}=\overrightarrow{0}$ has multiple solutions" is a bit of a red herring. Because $13>5$, it should be obvious that $A \vec{x}=\overrightarrow{0}$ has multiple solutions.

