Name \qquad

1) Find the determinant of the matrix below.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & 2 & 2 \\
4 & -2 & 1
\end{array}\right]} \\
\left|\begin{array}{ccc}
1 & 3 & -1 \\
0 & 2 & 2 \\
4 & -2 & 1
\end{array}\right|=1 \cdot\left|\begin{array}{cc}
2 & 2 \\
-2 & 1
\end{array}\right|+4 \cdot\left|\begin{array}{cc}
3 & -1 \\
2 & 2
\end{array}\right|=2+4+4(6+2)=38
\end{gathered}
$$

2) Find the determinant of the matrix below.

$$
\begin{aligned}
& \left.\left|\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 \\
5 & 5 & 5 & 5 & 5 \\
4 & 4 & 4 & 4 & 0 \\
3 & 3 & 3 & 0 & 0
\end{array}\right|=-\left\lvert\, \begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 \\
5 & 5 & 5 & 5 & 5 \\
4 & 4 & 4 & 4 & 0 \\
3 & 3 & 3 & 0 & 0
\end{array}\right.\right] \\
& \left.\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 4 & 0 \\
5 & 5 & 5 & 5 & 5
\end{array} \right\rvert\,=-1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=-120
\end{aligned}
$$

3) Suppose the matrix A has size 6×6. That is, 6 rows and 6 columns. It is known that the equation $A \vec{x}=\vec{b}$ has a solution when $b=\left[\begin{array}{llllll}1 & 2 & 5 & 4 & 5 & 1\end{array}\right]^{T}$. It is also known that $|A|=3$. How many solutions are there to $A \vec{x}=\vec{b}$?

The fact that $|A|=3$ tells us that A is invertible, meaning that the solution to $A \vec{x}=\vec{b}$ is unique. That is:

There is one solution to $A \vec{x}=\vec{b}$.

