Name \qquad
$V=\mathbb{R}^{3}$ with basis $B_{1}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]\right\}$
$W=\mathbb{R}^{2}$ with basis $B_{2}=\left\{\left[\begin{array}{l}5 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 6\end{array}\right]\right\}$
T is a linear transformation from V to W, and is given by:

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{S}\right)=\left[\begin{array}{c}
x+y \\
z
\end{array}\right]_{S}
$$

1) Using the information above, find a formula for T that allows us to compute $T(\vec{x})$ when \vec{x} is expressed in the natural basis of V. You do not need to simplify the formula.

$$
\left[\begin{array}{ll}
5 & 4 \\
3 & 6
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

2) Suppose a linear transformation T goes from \mathbb{R}^{12} to \mathbb{R}^{4}, and it is known that $A \vec{x}=\vec{b}$ has no solutions when $\vec{b}=\left[\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right]^{T}$. What is the determinant of $[T]^{\mathrm{T}}[T]$?
(Here A is the matrix representing T)

Because $A \vec{x}=\vec{b}$ has no solutions, we know that there is a row without a pivot. The matrix A has 4 rows and 12 columns. So A has rank at most 3 , which means that $A^{T} A$ has rank at most 3 . That means that $\left|A^{T} A\right|=0$.

