Name

$$V = \mathbb{R}^3 \text{ with basis } B_1 = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\1 \end{bmatrix} \right\}$$

 $W = \mathbb{R}^2$ with basis $B_2 = \left\{ \begin{bmatrix} 5\\3 \end{bmatrix}, \begin{bmatrix} 4\\6 \end{bmatrix} \right\}$

T is a linear transformation from V to W, and is given by:

T	($\begin{bmatrix} x \\ v \end{bmatrix}$])	=	[x	$\begin{bmatrix} x+y \end{bmatrix}$			
-		$\left[_{z}\right]$	s)		L	Ζ	J	S	

1) Using the information above, find a formula for T that allows us to compute $T(\vec{x})$ when \vec{x} is expressed in the natural basis of V. You do not need to simplify the formula.

[5	4]	$^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	[1 0	1 1	3 1
13	61	10	0	T1	1	0	1

2) Suppose a linear transformation T goes from \mathbb{R}^{12} to \mathbb{R}^4 , and it is known that $A\vec{x} = \vec{b}$ has no solutions when $\vec{b} = \begin{bmatrix} 1 & 2 & 3 & 5 \end{bmatrix}^T$. What is the determinant of $\begin{bmatrix} T \end{bmatrix}^T \begin{bmatrix} T \end{bmatrix}$?

(Here A is the matrix representing T)

Because $A\vec{x} = \vec{b}$ has no solutions, we know that there is a row without a pivot. The matrix A has 4 rows and 12 columns. So A has rank at most 3, which means that $A^T A$ has rank at most 3. That means that $|A^T A| = 0$.