Use the system of equations below for the following FOUR problems.

$$-5x_1 - 3x_2 = 4$$

 $2x_2 = 10$

1) Solve the system of equations. (4 points)

2) Write the system of equations a matrix equation $A\vec{x} = \vec{b}$. (4 points)

3) Write the system of equations as a vector equation $\vec{v}_1 c_1 + \vec{v}_2 c_2 = \vec{b}$. (4 points)

4) Let *A* be the 2 × 2 matrix with complex entries given by $A = \begin{bmatrix} 0 & a+bi \\ 0 & 0 \end{bmatrix}$. Show that $(\bar{A})^T = \overline{A^T}$. (4 points)

5) Answer the following as true or false. A statement is true if it is *always* true; false if it is *ever* false. (Assume sizes are such that addition and multiplication operations make sense) (2 points each)

- T F a) Suppose A is a square matrix with two equal columns. Then A is invertible.
- T F b) Suppose A and B are square matrices. Then AB = BA.
- T F c) Suppose A and B are square matrices. Then $A^2 B^2 = (A B)(A + B)$.
- T F d) Suppose A is not a square matrix. Then A is symmetric.
- T F e) Suppose A is not a square matrix. Then $A^T A$ is symmetric.
- T F f) Suppose A and C are square matrices, but B is not. Then $(ABC)^T = C^T B^T A^T$.
- T F g) Suppose A, B, and C are invertible matrices. Then $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.

6) Find $\begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & 4 \end{bmatrix}^T$ (4 points)

7) Find an example of a 2 \times 4 matrix *A* such that AA^T is nonsingular. (6 points)

	<u>[</u> 1	0	0]
8) Find a formula for the quadratic form $q = q(x, y, z)$ with the matrix representation	0	3	0 .
	LO	0	_2
(4 points)			

9) Given the matrix A below, does the nonhomogeneous system of equations $A\vec{x} = \vec{b}$ have a solution for every choice of b? Justify your answer. (6 points)

	[1	0	2	0	01
A =	0	1	0	1	2
	LO	0	0	2	4

10) Partition the matrix below so that it has 6 parts. -1 2 3 4a

1	2	3	41
2	2	2	4 2 0
3	6	9	0
1	1	1	1
)	0	0	0]
	1 2 3 1 0	2 2 3 6 1 1	2 2 2 3 6 9 1 1 1

(4 points)

11) Let *A*, *B*, *C*, and *X* be matrices of appropriate sizes. Assume everything is invertible. Solve the equation $B(X + A)^{-1} = C$ for *X*. Show your work. (6 points)

12) Determine if
$$\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
 and $\begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ are orthogonal. Show your work.
(4 points)

13) Give an example of an infinite set of vectors in \mathbb{R}^3 that do not form a vector space. (4 points)

14) Give an example of a vector space that is not \mathbb{R}^n for any n. (4 points)

15) Find the null space of $\begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & 4 \end{bmatrix}$ (10 points)

	[1	1	2]
16) Find the inverse of	0	2	4
	Lo	2	5]
(10 points)			

17) You know that the matrix equation $A\vec{x} = \vec{0}$ has more than one solution. What else can you say? (4 points per insightful statement; 1 point per obvious statement; every incorrect statement nullifies a correct statement. 8 points maximum)

(This page intentionally left blank. Work here will not be counted unless specifically referenced earlier)