\qquad

Use the system of equations below for the following FOUR problems.

$$
\begin{aligned}
-5 x_{1}-3 x_{2} & =4 \\
2 x_{2} & =10
\end{aligned}
$$

1) Solve the system of equations.
(4 points)

The second equation gives us:

$$
x_{2}=5
$$

Then the first equation gives us:

$$
x_{1}=\frac{4+3 x_{2}}{-5}=\frac{4+15}{-5}=-\frac{19}{5}
$$

2) Write the system of equations a matrix equation $A \vec{x}=\vec{b}$.
(4 points)

$$
\left[\begin{array}{cc}
-5 & -3 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
4 \\
10
\end{array}\right]
$$

3) Write the system of equations as a vector equation $\vec{v}_{1} c_{1}+\vec{v}_{2} c_{2}=\vec{b}$. (4 points)

$$
\left[\begin{array}{c}
-5 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{c}
-3 \\
2
\end{array}\right] x_{2}=\left[\begin{array}{c}
4 \\
10
\end{array}\right]
$$

4) Let A be the 2×2 matrix with complex entries given by $A=\left[\begin{array}{cc}0 & a+b i \\ 0 & 0\end{array}\right]$. Show that $(\bar{A})^{T}=\overline{A^{T}}$. (4 points)

$$
\begin{gathered}
\overline{\left[\begin{array}{cc}
0 & a+b l \\
0 & 0
\end{array}\right]^{T}}=\left[\begin{array}{cc}
0 & a-b i \\
0 & 0
\end{array}\right]^{T}=\left[\begin{array}{cc}
0 & 0 \\
a-b i & 0
\end{array}\right] \\
\overline{\left[\begin{array}{cc}
0 & a+b l \\
0 & 0
\end{array}\right]^{T}}=\overline{\left[\begin{array}{cc}
0 & 0 \\
a+b l & 0
\end{array}\right]}=\left[\begin{array}{cc}
0 & 0 \\
a-b i & 0
\end{array}\right] \\
\therefore \overline{\left[\begin{array}{cc}
0 & a+b l \\
0 & 0
\end{array}\right]^{T}=\overline{\left[\begin{array}{cc}
0 & a+b l \\
0 & 0
\end{array}\right]^{T}}}
\end{gathered}
$$

5) Answer the following as true or false. A statement is true if it is always true; false if it is ever false.
(Assume sizes are such that addition and multiplication operations make sense) (2 points each)
T (F) a) Suppose A is a square matrix with two equal columns. Then A is invertible.
T F b) Suppose A and B are square matrices. Then $A B=B A$.
T F c) Suppose A and B are square matrices. Then $A^{2}-B^{2}=(A-B)(A+B)$.
T F d) Suppose A is not a square matrix. Then A is symmetric.
(T) $\mathrm{F} \quad$ e) Suppose A is not a square matrix. Then $A^{T} A$ is symmetric.
(I) F f) Suppose A and C are square matrices, but B is not. Then $(A B C)^{T}=C^{T} B^{T} A^{T}$.
(T) F g) Suppose A, B, and C are invertible matrices. Then $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.

Question 5 r=0.473

6) Find $\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 5 & 4\end{array}\right]^{T}$
(4 points)

$$
\left[\begin{array}{cc}
2 & 0 \\
-1 & 5 \\
3 & 4
\end{array}\right]
$$

Question 6 r=0.473

7) Find an example of a 2×4 matrix A such that $A A^{T}$ is nonsingular.
(6 points)

This question is a bit tricky/tedious. If it hadn't been a homework problem l'd of left more time for you to try to figure it out on the test. It turns out there's a really simple solution, though, after you've figured out what to do:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(There are multiple possible other answers)

Question 7 r=0.516

8) Find a formula for the quadratic form $q=q(x, y, z)$ with the matrix representation $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2\end{array}\right]$. (4 points)

$$
x^{2}+3 y^{2}-2 z^{2}
$$

Full credit was also given if you used x_{1}, x_{2}, and x_{3}, or correctly expressed it as a matrix expression.

Question $8 \mathrm{r}=\mathbf{0 . 4 8}$

9) Given the matrix A below, does the nonhogeneous system of equations $A \vec{x}=\vec{b}$ have a solution for every choice of b ? Justify your answer. (6 points)

$$
A=\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

Yes it does, because in reduced row echelon form we see that there is a pivot in each row which allows us to solve any system of equations using this matrix:
$\left[\begin{array}{ccccc}1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & (1) & 2\end{array}\right]$

10) Partition the matrix below so that it has 6 parts.
$\left[\begin{array}{l|ll|l}1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \\ 3 & 6 & 9 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(4 points)
(There are multiple possible other answers)

Question $10 \mathrm{r}=0$

11) Let A, B, C, and X be matrices of appropriate sizes. Assume everything is invertible. Solve the equation $B(X+A)^{-1}=C$ for X. Show your work.
(6 points)

$$
\begin{gathered}
(X+A)^{-1}=B^{-1} C \\
X+A=C^{-1} B \\
X=C^{-1} B-A
\end{gathered}
$$

12) Determine if $\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]$ are orthogonal. Show your work. (4 points)
$\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]=6-2=4 \neq 0$

No, they're not orthogonal.

13) Give an example of an infinite set of vectors in \mathbb{R}^{3} that do not form a vector space.
(4 points)

$$
\left\{\left[\begin{array}{c}
a \\
b \\
1
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

(There are multiple possible other answers)

14) Give an example of a vector space that is not \mathbb{R}^{n} for any n.
(4 points)
$\operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}\right)$
(There are multiple possible other answers)

Question 14 r=0.752

15) Find the null space of $\left[\begin{array}{ccc}1 & 2 & -2 \\ 0 & 1 & 4\end{array}\right]$
(10 points)

The null space of A is the solution set to $A \vec{x}=\overrightarrow{0}$. We can find this by row reducing the matrix:

$$
\left[\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & 4
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 0 & -10 \\
0 & 1 & 4
\end{array}\right]
$$

Now with $x_{3}=a$ as a free variable, we see that $x_{2}=-4 a$ and $x_{1}=10 a$. This gives us the solution set:

$$
\left\{\left[\begin{array}{c}
10 a \\
-4 a \\
a
\end{array}\right]: a \in \mathbb{R}\right\}=\operatorname{span}\left(\left\{\left[\begin{array}{c}
10 \\
-4 \\
1
\end{array}\right]\right)\right\}
$$

16) Find the inverse of $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 2 & 5\end{array}\right]$
(10 points)

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 2 & 4 & 0 & 1 & 0 \\
0 & 2 & 5 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 5 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
0 & 1 & 2 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 5 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
0 & 1 & 2 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]} \\
& \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
0 & 1 & 0 & 0 & \frac{5}{2} & -2 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 4 \\
0 & 2 & 5
\end{array}\right]^{=1}=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & \frac{5}{2} & -2 \\
0 & -1 & 1
\end{array}\right]}
\end{aligned}
$$

17) You know that the matrix equation $A \vec{x}=\overrightarrow{0}$ has more than one solution. What else can you say?
(4 points per insightful statement; 1 point per obvious statement; every incorrect statement nullifies a correct statement. 8 points maximum)
Some key insightful things we can say are that:
A has a column without a pivot.
The row space of A is not all of \mathbb{R}^{m}.
$A \vec{x}=\overrightarrow{0}$ has infinitely many solutions.
The system of equations has a free variable.

