$\qquad$

Non-calculator portion. Turn this portion in before you take out your technology.

1) An equation $A \vec{x}=\vec{b}$ has the solution given below, where $s_{1}$ and $s_{2}$ are free variables. Express the solution as a meaningful linear combination of vectors.

$$
\begin{aligned}
& x_{1}=-1+2 s_{1} \\
& x_{2}=3 s_{1}+2 s_{2} \\
& x_{3}=s_{1}-s_{2}
\end{aligned}
$$

(6 points)
2) Expand the set below to give a basis for $\mathbb{R}^{2}$.

$$
\left\{\left[\begin{array}{c}
1 \\
-3
\end{array}\right]\right\}
$$

(4 points)
3) A $8 \times 5$ matrix has a null space of dimension 3 . What is the rank of $A$ ?
4) Suppose the matrix $A$ has size $11 \times 7$. That is, 11 rows and 7 columns. It is known that the equation $A \vec{x}=\overrightarrow{0}$ has multiple solutions, but that $A \vec{x}=\left[\begin{array}{lllll}1 & 2 & 3 & 3 & 1\end{array}\right]^{T}$ has no solutions. Find the smallest possible dimension the null space of $A$ could have.
(6 points)
5) Find the determinant of the matrix below.
$\left[\begin{array}{ccc}-4 & 2 & -2 \\ 1 & 0 & 1 \\ 3 & -1 & 1\end{array}\right]$
(10 points)
6) Find the matrix $A$ so that the linear transformation below is given by $T(\vec{x})=A \vec{x}$.

$$
\begin{aligned}
& T: \mathbb{R}^{3} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

(6 points)
7) Let $B$ be defined below. Find the change of basis matrix $[I]_{B}^{S}$.

$$
B=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right]\right\}
$$

(4 points)
8) Answer the following as true or false. A statement is true if it is always true; false if it is ever false. (2 points each)

T F a) Every matrix $A$ has a determinant.
T F b) The range, $T(V)$, of a linear transformation $T: V \rightarrow W$ is a vector space.
T F c) If a linear transformation $T: V \rightarrow W$ is one-to-one, then it is onto.
T F d) If $A \vec{x}=\vec{b}$ can be solved for every choice of $\vec{b}$, then the linear transformation given by $T(\vec{x})=A \vec{x}$ is onto.
T $\mathrm{F} \quad$ e) Using matrices, we can write down a formula for the solution $\vec{x}$ to $A \vec{x}=\vec{b}$ no matter what $\vec{b}$ is.
9) Let $T$ be the linear transformation below. Prove that $T$ is onto by either using some theorem/concept or by finding the input $\vec{x}$ that maps to the output $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$.

$$
\begin{aligned}
T: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & \mapsto\left[\begin{array}{c}
x_{1} \\
2 x_{2}
\end{array}\right]
\end{aligned}
$$

(4 points)
10) Let $A$ be an $n \times n$ matrix. You know that the matrix equation $A \vec{x}=\overrightarrow{0}$ has more than one solution. What else can you say?
(4 points per insightful statement; 1 point per obvious statement; every incorrect statement nullifies a correct statement. 12 points maximum)

Name $\qquad$ Test 2, Fall 2017

Technology portion: After you turn in the non-calculator portion, you may take out your technology and finish this portion. If you're using a phone or tablet, leave it flat on the desk.

Use the matrix $A$, below, for the problems on this page.

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & -1 & 1 \\
1 & 2 & 1 & 0 & 2 \\
-1 & -4 & 1 & -2 & 3 \\
1 & -2 & 5 & -4 & -2
\end{array}\right]
$$

11) Find the null space of $A$. (6 points)
12) Is $\left[\begin{array}{c}1 \\ 2 \\ 3 \\ -2\end{array}\right]$ in the vector space spanned by $\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -4 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ -2 \\ -4\end{array}\right]\right\}$ ? Why or why not?
(6 points)
13) Find a subset of the vectors below that is a basis of $\mathbb{R}^{3}$
$\left\{\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}11 \\ 10 \\ 7\end{array}\right],\left[\begin{array}{l}7 \\ 6 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right]\right\}$
(6 points)
14) Let $B_{1}$ and $B_{2}$ be defined below. Find the change of basis matrix $[I]_{B_{1}}^{B_{2}}$.

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right]\right\}, \quad B_{2}=\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
4 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(8 points)
15) Define the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ via $T(\vec{x})=A \vec{x}$. What is $T\left(\left[\begin{array}{llll}1 & 2 & 4 & 2\end{array}\right]^{T}\right)$ ?

$$
A=\left[\begin{array}{llll}
6 & 1 & 2 & 1 \\
3 & 1 & 0 & 0 \\
0 & 2 & 2 & 1
\end{array}\right]
$$

(6 points)
16) Define the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ via $T(\vec{x})=A \vec{x}$ where $A$ is defined below. Is $T$ one-toone? Why or why not?
$\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \\ 1 & 1 & 1\end{array}\right]$
(6 points)

