\qquad

Non-calculator portion. Turn this portion in before you take out your technology.

1) An equation $A \vec{x}=\vec{b}$ has the solution given below, where s_{1} and s_{2} are free variables. Express the solution as a meaningful linear combination of vectors.

$$
\begin{aligned}
& x_{1}=-1+2 s_{1} \\
& x_{2}=3 s_{1}+2 s_{2} \\
& x_{3}=s_{1}-s_{2}
\end{aligned}
$$

(6 points)

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] s_{1}+\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right] s_{2}
$$

2) Expand the set below to give a basis for \mathbb{R}^{2}.
$\left[\begin{array}{ll}1 \\ -1\end{array}\right]$
(4 points)

$$
\left\{\left[\begin{array}{c}
1 \\
-3
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

3) A 8×5 matrix has a null space of dimension 3 . What is the rank of A ?
(6 points)

2

The fact that the nullity is 3 tell us that there are 3 free variables. There are 5 columns to play with, and so the other two have pivots - that gives us our rank.

4) Suppose the matrix A has size 11×7. That is, 11 rows and 7 columns. It is known that the equation $A \vec{x}=\overrightarrow{0}$ has multiple solutions, but that $A \vec{x}=\left[\begin{array}{lllll}1 & 2 & 3 & 3 & 1\end{array}\right]^{T}$ has no solutions. Find the smallest possible dimension the null space of A could have.
(6 points)

Note: The \vec{b} should be replaced with a vector in \mathbb{R}^{11} because A has 11 rows. Otherwise the problem doesn't really make sense because $A \vec{x}$ and \vec{b} aren't the same size.

7 columns means the null space could have dimension $0,1,2,3,4,5,6$, or 7 .
$A \vec{x}=\overrightarrow{0}$ has multiple solutions means there must be at least one free variable, so the null space can't have dimension 0 .
$A \vec{x}=\left[\begin{array}{lllll}1 & 2 & 3 & 3 & 1\end{array}\right]^{T}$ has no solutions tell us that there must be a zero row in reduced row echelon form. But there are more rows than columns, so this is a bit of a red herring and tells us nothing about the null space.

The smallest dimension of the null space is 1 .

5) Find the determinant of the matrix below.

$$
\left[\begin{array}{ccc}
-4 & 2 & -2 \\
1 & 0 & 1 \\
3 & -1 & 1
\end{array}\right]
$$

(10 points)

Expanding it on the second row we get:

$$
-\left|\begin{array}{cc}
2 & -2 \\
-1 & 1
\end{array}\right|-\left|\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right|=-(2-2)-(4-6)=2
$$

6) Find the matrix A so that the linear transformation below is given by $T(\vec{x})=A \vec{x}$.

$$
\begin{aligned}
T: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & \mapsto\left[\begin{array}{c}
x_{2}-5 x_{3} \\
7 x_{3}
\end{array}\right]
\end{aligned}
$$

(6 points)

$$
A=\left[\begin{array}{ccc}
0 & 1 & -5 \\
0 & 0 & 7
\end{array}\right]
$$

Question 6 r=0.821

7) Let B be defined below. Find the change of basis matrix $[I]_{B}^{S}$.

$$
B=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right]\right\}
$$

(4 points)

$$
[I]_{B}^{S}=\left[\begin{array}{lll}
1 & 4 & 0 \\
2 & 4 & 2 \\
3 & 6 & 5
\end{array}\right]
$$

Question 7 r=0.631

8) Answer the following as true or false. A statement is true if it is always true; false if it is ever false. (2 points each)
T (F a) Every matrix A has a determinant.
(1) F b) The range, $T(V)$, of a linear transformation $T: V \rightarrow W$ is a vector space.
$\mathrm{T}(\mathrm{F})$ c) If a linear transformation $T: V \rightarrow W$ is one-to-one, then it is onto.
(T) F d) If $A \vec{x}=\vec{b}$ can be solved for every choice of \vec{b}, then the linear transformation given by $T(\vec{x})=A \vec{x}$ is onto.
T F e) Using matrices, we can write down a formula for the solution \vec{x} to $A \vec{x}=\vec{b}$ no matter what \vec{b} is.

9) Let T be the linear transformation below. Prove that T is onto by either using some theorem/concept or by finding the input \vec{x} that maps to the output $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$.

$$
\begin{aligned}
T: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & \mapsto\left[\begin{array}{l}
x_{1} \\
2 x_{2}
\end{array}\right]
\end{aligned}
$$

(4 points)

Using a theorem/concept:
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0\end{array}\right] \sim_{R}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ has a pivot in each row. Hence T is onto.
Doing it directly:
Suppose $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \in \mathbb{R}^{2}$
(Do scratch work elsewhere to figure out what \vec{x} should be on the next line)
Choose $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \frac{1}{2} y_{2} \\ 0\end{array}\right]$.

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=T\left(\left[\begin{array}{c}
y_{1} \\
\frac{1}{2} y_{2} \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1} \\
2\left(\frac{1}{2} y_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

10）Let A be an $n \times n$ matrix．You know that the matrix equation $A \vec{x}=\overrightarrow{0}$ has more than one solution．
What else can you say？
（4 points per insightful statement； 1 point per obvious statement；every incorrect statement nullifies a correct statement． 12 points maximum）

The fact that there is more than one solution means that we have the negation of everything in the big theorem：
（ A is not invertible．
－A is singular．
回 $A \vec{x}=\overrightarrow{0}$ has more than the trivial solution．（Can＇t use this one－it was what was given！！！）
－A is not a product of elementary matrices．
\square Not every row has a pivot．（In reduced row echelon form）
－Not every column has a pivot．（In reduced row echelon form）
回 $\operatorname{rank}(A)<n$
\square The rows of A are linearly dependent
－$R S(A) \subset \mathbb{R}^{n}$（proper subset）
－ $\operatorname{dim}(R S(A))<n$
－The columns of A are linearly dependent
－ $\operatorname{CS}(A) \subset \mathbb{R}^{n} \quad$（proper subset）
－ $\operatorname{dim}(\operatorname{CS}(A))<n$
回 $|A|=0$

Color scheme：
Green ink－your statement doesn＇t make sense．I don＇t mean it＇s wrong or right，it＇s impossible to evaluate whether it＇s right or wrong because the grammar literally doesn＇t make sense．Think about it as a compile error in a computer program：we can＇t evaluate if the logic is right or wrong because there isn＇t any output．
If the grammar is close enough to correct that I can make sense of it，half credit was awarded．Denoted with a circled＂ 2 ＂．

Blue ink－incorrect statements that cancelled a correct statement．

Pink ink－Something can be correctly said，but more information is needed．Likely an ambiguous pronoun， such as＂it has infinitely many solutions＂．What is＂it＂？

Orange ink－Things that are just too obvious to give any points for．Such as＂A nas n columns．＂Yeah．I told you that！

Technology portion: After you turn in the non-calculator portion, you may take out your technology and finish this portion. If you're using a phone or tablet, leave it flat on the desk.

Use the matrix A, below, for the problems on this page.

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 2 & -1 & 1 \\
1 & 2 & 1 & 0 & 2 \\
-1 & -4 & 1 & -2 & 3 \\
1 & -2 & 5 & -4 & -2
\end{array}\right]
$$

11) Find the null space of A.
(6 points)

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
1 & 1 & 2 & -1 & 1 \\
1 & 2 & 1 & 0 & 2 \\
-1 & -4 & 1 & -2 & 3 \\
1 & -2 & 5 & -4 & -2
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
x_{5}=0
\end{gathered}
$$

x_{4} is free-let's choose $x_{4}=b$
x_{3} is free - let's choose $x_{3}=a$

$$
\begin{gathered}
x_{2}=a-b \\
x_{1}=-3 a+2 b \\
N S(A)=\left\{\left[\begin{array}{c}
-3 a+2 b \\
a-b \\
a \\
b \\
0
\end{array}\right]: a, b \in \mathbb{R}\right\}
\end{gathered}
$$

12) Is $\left[\begin{array}{c}1 \\ 2 \\ 3 \\ -2\end{array}\right]$ in the vector space with basis $\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -4 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ -2 \\ -4\end{array}\right]\right\}$? Why or why not?
(6 points)
I should have said the vector space "spanned by" these and not used the word basis. They're not linearly independent, so they can't be a basis. Full credit was given retroactively if you said yes, because 4 vectors that form a basis in \mathbb{R}^{4} generate everything in \mathbb{R}^{4} including that given vector.

Here be careful, the matrix to row reduce is actually the 4×5 matrix after we've added in the extra vector. If you only reduce the original, you lose information compared with the extra vector.

$$
\left[\begin{array}{ccccc}
1 & 1 & 2 & -1 & 1 \\
1 & 2 & 1 & 0 & 2 \\
-1 & -4 & 1 & -2 & 3 \\
1 & -2 & 5 & -4 & -2
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From the pivots, we see that the fifth column is not a linear combination of the first four columns. Hence
is it not in $\left.\operatorname{span}\left(\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -4 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ -2 \\ -4\end{array}\right]\right)\right\}\right)$.

13) Find a subset of the vectors below that is a basis of \mathbb{R}^{3}
$\left\{\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}11 \\ 10 \\ 7\end{array}\right],\left[\begin{array}{l}7 \\ 6 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right]\right\}$
(6 points)

$$
\left[\begin{array}{ccccc}
1 & 3 & 11 & 7 & 3 \\
2 & 2 & 10 & 6 & 2 \\
2 & 1 & 7 & 4 & 2
\end{array}\right] \sim_{R}\left[\begin{array}{lllll}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 3 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

From the pivots we see that we need the fifth vector, and we can choose the first two:

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right]\right\}
$$

14) Let B_{1} and B_{2} be defined below. Find the change of basis matrix $[I]_{B_{1}}^{B_{2}}$.

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right]\right\}, \quad B_{2}=\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
4 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(8 points)

$$
[I]_{B_{1}}^{B_{2}}=[I]_{S}^{B_{2}}[I]_{B_{1}}^{S}=\left([I]_{B_{2}}^{S}\right)^{-1}[I]_{B_{1}}^{S}=\left[\begin{array}{ccc}
1 & 4 & 1 \\
0 & -3 & 1 \\
3 & 2 & 1
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & 4 & 0 \\
2 & 4 & 2 \\
3 & 6 & 5
\end{array}\right]=\left[\begin{array}{ccc}
\frac{3}{4} & \frac{7}{8} & \frac{31}{16} \\
-\frac{1}{4} & -\frac{1}{8} & -\frac{9}{16} \\
\frac{5}{4} & \frac{29}{8} & \frac{5}{16}
\end{array}\right]
$$

15) Define the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ via $T(\vec{x})=A \vec{x}$. What is $T\left(\left[\begin{array}{llll}1 & 2 & 4 & 2\end{array}\right]^{T}\right)$?

$$
A=\left[\begin{array}{llll}
6 & 1 & 2 & 1 \\
3 & 1 & 0 & 0 \\
0 & 2 & 2 & 1
\end{array}\right]
$$

(6 points)

$$
\left[\begin{array}{llll}
6 & 1 & 2 & 1 \\
3 & 1 & 0 & 0 \\
0 & 2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{c}
18 \\
5 \\
14
\end{array}\right]
$$

16) Define the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ via $T(\vec{x})=A \vec{x}$ where A is defined below. Is T one-toone? Why or why not?
$\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \\ 1 & 1 & 1\end{array}\right]$
(6 points)
$\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \\ 1 & 1 & 1\end{array}\right] \sim_{R}\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

We do not have a pivot in every column, meaning there are free variables, meaning it is not one-to-one!

