Name

For these problems define $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $B = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, and $[B] = [\vec{v}_1 \quad \vec{v}_2 \quad \vec{v}_3]$. Note that B is a basis for the vector space \mathbb{R}^3 and [B] is a 3×3 matrix who's columns are the vectors \vec{v}_1, \vec{v}_2 , and \vec{v}_3 .

1) Find the linear combination $2ec{v}_1 - 3ec{v}_2 + ec{v}_3$

$$2\vec{v}_1 - 3\vec{v}_2 + \vec{v}_3 = 2\begin{bmatrix}1\\2\\3\end{bmatrix} - 3\begin{bmatrix}1\\0\\1\end{bmatrix} + \begin{bmatrix}0\\1\\2\end{bmatrix} = \begin{bmatrix}2\\4\\6\end{bmatrix} + \begin{bmatrix}-3\\0\\-3\end{bmatrix} + \begin{bmatrix}0\\1\\2\end{bmatrix} = \begin{bmatrix}-1\\5\\5\end{bmatrix}$$

2) Given the vector $\vec{x}_B = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}_B$, find \vec{x}_S .

	[1	1	0]	[2]		[-1]	
$\vec{x}_x =$	2	0	1	-3	=	5	
	3	1	2	l 1 .	В	5	ls

That looks surprisingly similar to the answer to #1. Do you know why?

3) If we were to row reduce [B], how many rows would have a pivot?

All 3 rows would have pivots. Please note that you can solve this problem conceptually. You will not have time on a test to actually row reduce [*B*].

4) What is $\dim(RS([B]))$?

3

5) How many solutions does $[B]\vec{x} = \vec{0}$ have?

One unique solution.