\qquad Quiz 3

For these problems define $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, and $[B]=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$.
Note that B is a basis for the vector space \mathbb{R}^{3} and $[B]$ is a 3×3 matrix who's columns are the vectors \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.

1) Find the linear combination $2 \vec{v}_{1}-3 \vec{v}_{2}+\vec{v}_{3}$

$$
2 \vec{v}_{1}-3 \vec{v}_{2}+\vec{v}_{3}=2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-3\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]+\left[\begin{array}{c}
-3 \\
0 \\
-3
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5 \\
5
\end{array}\right]
$$

2) Given the vector $\vec{x}_{B}=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]_{B}$, find \vec{x}_{S}.

$$
\vec{x}_{x}=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1 \\
3 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]_{B}=\left[\begin{array}{c}
-1 \\
5 \\
5
\end{array}\right]_{S}
$$

That looks surprisingly similar to the answer to \#1. Do you know why?
3) If we were to row reduce $[B]$, how many rows would have a pivot?

All 3 rows would have pivots.
Please note that you can solve this problem conceptually. You will not have time on a test to actually row reduce $[B]$.
4) What is $\operatorname{dim}(R S([B]))$?

3
5) How many solutions does $[B] \vec{x}=\overrightarrow{0}$ have?

One unique solution.

