Name \qquad
For these problems define $B_{1}=\left\{\left[\begin{array}{l}1 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 6\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]_{S}\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{2}\end{array}\right]_{S}$

1) Find an expression that gives $[T]_{S}^{S}$
2) Find an expression that gives $[T]_{B_{1}}^{B_{2}}$
3) A 5×7 matrix has a null space of dimension 3 . When it is row reduced, how many rows of zeroes will there be?
