Name ____

For these problems define $B_1 = \left\{ \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \end{bmatrix} \right\}$ and $B_2 = \left\{ \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_S \right) = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}_S$

1) Find an expression that gives $[T]_S^S$

$$[T]_S^S = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

2) Find an expression that gives $[T]_{B_1}^{B_2}$

 $[T]_{B_1}^{B_2} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$

3) A 5 \times 7 matrix has a null space of dimension 3. When it is row reduced, how many rows of zeroes will there be?

One

A null space of dimension 3 means there are 3 free variables. From 7 columns total, this means there are 4 pivots. That means of the 5 rows, there is one left with a row of zeroes.