\qquad

1) Given the system of equations below, find the corresponding matrix equation. (5 points)

$$
\begin{array}{r}
7 x-y=1 \\
y=5
\end{array}
$$

2) In the equation below, circle all answers that describe how A relates to B. (5 points)

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] A=B
$$

(A) Matrix B is the same as matrix A with rows 2 and 4 swapped.
(B) Matrix B is the same as matrix A with rows 1 and 3 swapped.
(C) Matrix B is the same as matrix A with columns 2 and 4 swapped.
(D) Matrix B is the same as matrix A with columns 1 and 3 swapped.
(E) Matrix B is the same as matrix A with row 2 multiplied by 2
(F) Matrix B is the same as matrix A with row 2 multiplied by $1 / 2$
(G) Matrix B is the same as matrix A with row 4 multiplied by 2
(H) Matrix B is the same as matrix A with row 4 multiplied by $1 / 2$
(I) Matrix B is the same as matrix A with column 2 multiplied by 2
(J) Matrix B is the same as matrix A with column 2 multiplied by $1 / 2$
(K) Matrix B is the same as matrix A with column 4 multiplied by 2
(L) Matrix B is the same as matrix A with column 4 multiplied by $1 / 2$
3) Given $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0\end{array}\right]$, how many solutions does $A \vec{x}=\overrightarrow{0}$ have? (5 points)
4) Given $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0\end{array}\right]$, how many solutions does $A \vec{x}=\left[\begin{array}{l}2 \\ 2 \\ 4 \\ 3\end{array}\right]$ have? (5 points)
5) Find the length of $\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 5\end{array}\right]$. (5 points)
6) Multiply the two matrices as indicated below. (15 points)

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 7 \\
2 & 2 & 3 \\
4 & 2 & 3
\end{array}\right]
$$

7) Add the two matrices as indicated below. (5 points)

$$
\left[\begin{array}{cc}
1 & 3 \\
5 & -2
\end{array}\right]+\left[\begin{array}{cc}
2 & 0 \\
-1 & 7
\end{array}\right]
$$

8) Find the transpose of the matrix as indicated below. (5 points)

$$
\left[\begin{array}{cc}
1 & 2 \\
8 & -2
\end{array}\right]^{T}
$$

9) Let $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 6\end{array}\right]$, find the quadratic form that comes from this matrix. (5 points)
10) Let A be a 2×2 singular matrix. How many solutions does $A \vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ have? (5 points)
11) Assume A is a 5×5 matrix. If A is not a product of elementary matrices, how many solutions does the matrix equation $A \vec{x}=\overrightarrow{0}$ have? (5 points)
12) Solve the matrix equation below. (20 points)

$$
\left[\begin{array}{lll}
1 & 2 & 5 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

13) Row reduce the matrix below to reduced echelon form. (15 points)
$\left[\begin{array}{llll}4 & 2 & 1 & 0 \\ 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 0 & 3 & 6 & 9\end{array}\right]$
