Name \qquad

For the problems on this page, use the matrix A below.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 11 & 8 \\
1 & 2 & 3 & 2
\end{array}\right] \quad A \sim_{R}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

1) Find the row space of the matrix A. (4 points)

$$
\operatorname{span}(\{[1
$$

2) Find the column space of the matrix A. (4 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
5 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
6 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
8 \\
2
\end{array}\right]\right\}\right)
$$

3) Find the null space of the matrix A. (8 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]\right\}\right)
$$

4) Is $\left[\begin{array}{l}4 \\ 8 \\ 2\end{array}\right]$ in the span of $\left[\begin{array}{l}1 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 6 \\ 2\end{array}\right]$, and $\left[\begin{array}{c}3 \\ 11 \\ 3\end{array}\right]$? Why or why not? (6 points)

It is not. The pivot in the $4^{\text {th }}$ column above tells us that the vector $\left[\begin{array}{l}4 \\ 8 \\ 2\end{array}\right]$ is linearly independent from the first three.
5) What is the rank of A ? (4 points)

For the problems on this page, use the bases below. Write a formula for your answers, please do not perform the arithmetic.

$$
B_{1}=\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right]\right\} \quad B_{2}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
0 \\
7
\end{array}\right]\right\}
$$

6) Given $\vec{x}_{S}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]_{S}$, what is $\vec{x}_{B_{1}}$? (4 points)

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]_{S}
$$

7) Given $\vec{x}_{B_{1}}=\left[\begin{array}{l}9 \\ 8 \\ 7\end{array}\right]_{B_{1}}$, what is \vec{x}_{S} ? (4 points)

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
9 \\
8 \\
7
\end{array}\right]_{B_{1}}
$$

8) Given $\vec{x}_{B_{1}}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]_{B_{1}}$, what is $\vec{x}_{B_{2}}$? (8 points)

$$
\left[\begin{array}{lll}
1 & 1 & 5 \\
1 & 2 & 0 \\
1 & 1 & 7
\end{array}\right]^{-1}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]_{B_{1}}
$$

9) Find the determinant of the product below. Please perform the arithmetic. (5 points)

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 6 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 4 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 5 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 4 & 0 & 1
\end{array}\right]} \\
(3)(1)(-1)^{2}(6)(1)=18
\end{gathered}
$$

10) Find the determinant of the matrix below. Your answer may be a formula as long as it does not involve any determinants. (The basic 4 operations ($+-\times \div$) only) (5 points)

$$
\left.\left.1\left|\begin{array}{ll}
9 & 3 \\
8 & 2
\end{array}\right|-4\left|\begin{array}{ll}
7 & 3 \\
5 & 2
\end{array}\right|+6 \right\rvert\, \begin{array}{lll}
1 & 4 & 6 \\
7 & 9 & 3 \\
5 & 8 & 2
\end{array}\right]
$$

11) Find the determinant of the matrix below. Please perform the arithmetic. (10 points)

$$
\begin{gathered}
\left.2 \left\lvert\, \begin{array}{ccccc}
1 & 0 & 6 & 0 & 0 \\
0 & 1 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 3 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right.\right] \\
2\left|\begin{array}{llll}
1 & 0 & 6 & 0 \\
0 & 1 & 0 & 4 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=2 \cdot 1\left|\begin{array}{lll}
1 & 0 & 4 \\
3 & 3 & 0 \\
0 & 0 & 1
\end{array}\right|=2 \cdot 1 \cdot 1\left|\begin{array}{ll}
1 & 0 \\
3 & 3
\end{array}\right|=2 \cdot 1 \cdot 1 \cdot 3=6
\end{gathered}
$$

Suppose A is a 7×7 matrix such that $A \vec{x}=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 4\end{array}\right]^{T}$ has no solutions, but $A \vec{x}=\overrightarrow{0}$ has multiple solutions. Answer the following questions.

First note that this information tells us that in row reduced echelon form (1) there is a row of zeroes and (2) there is free variable. Because the matrix is square, these are equivalent statements.
12) How many solutions does $A \vec{x}=\overrightarrow{0}$ have? (2 points)
∞
13) Is A is invertible? (2 points)

No
14) What is the maximum number of pivots A can have? (2 points)

6
15) What is the maximum number of free variables $A \vec{x}=\overrightarrow{0}$ can have? (2 points)

7
16) What is the maximum rank A can have? (2 points)

6
17) Are the columns of A linearly independent? (2 points)

No

Suppose A is a 6×8 matrix such that $A \vec{x}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 4\end{array}\right]^{T}$ has no solutions, but $A \vec{x}=\overrightarrow{0}$ has multiple solutions. Answer the following questions.

First note that this information tells us that in row reduced echelon form (1) there is a row of zeroes and (2) there is free variable. Because the matrix is not square, these are not equivalent statements.
18) How many solutions does $A \vec{x}=\overrightarrow{0}$ have? (2 points)
∞
19) What is the maximum number of pivots A can have? (2 points)

5
20) What is the maximum number of free variables $A \vec{x}=\overrightarrow{0}$ can have? (2 points)

8
21) What is the maximum rank A can have? (2 points)

5
22) Are the rows of A linearly independent? (2 points)

No
23) Given the matrix A below, find the corresponding system of homogeneous linear equations. (4 points)

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 11 & 8 \\
1 & 2 & 3 & 2
\end{array}\right] \quad A \sim_{R}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 \\
5 x_{1}+6 x_{2}+11 x_{3}+8 x_{4}=0 \\
x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=0
\end{gathered}
$$

24) Row reduce the matrix below to reduced echelon form. (12 points)

$$
\left[\begin{array}{llll}
2 & 0 & 6 & 4 \\
1 & 1 & 4 & 2 \\
0 & 5 & 5 & 6
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 0 & 6 & 4 \\
1 & 1 & 4 & 2 \\
0 & 5 & 5 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
1 & 1 & 4 & 2 \\
0 & 5 & 5 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 0 \\
0 & 5 & 5 & 6
\end{array}\right] \sim \sim_{R}\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
R_{1} \rightarrow \frac{1}{2} R_{1}
\end{gathered}
$$

