Name \qquad Test 3, Fall 2019

1) A linear transformation is given by the rule $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-3 x_{2} \\ x_{3}\end{array}\right]$. Find the kernel of T. (10 points)
2) Determine whether or not the linear transformation from the previous problem is onto and justify your answer. (10 points)
3) Suppose a linear transformation satisfies the equations below. Find $[T]$. (10 points)

$$
T\left(\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
6
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
6 \\
12
\end{array}\right]
$$

4) Let $B_{1}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 3\end{array}\right]\right\}$ and $B_{2}=\left\{\left[\begin{array}{l}5 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 6\end{array}\right]\right\}$. Find a formula for $[I]_{B_{1}}^{B_{2}}$, the change of basis matrix from B_{1} to B_{2}. (10 points)
5) Let B_{1} and B_{2} both be bases for \mathbb{R}^{3}. Let T be a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} with matrix representation A under the standard basis. Find a formula for $\left[A^{-1}\right]_{B_{1}}^{B_{2}}$. 10 points)
6) Find a diagonalization of the matrix below. (10 points)
$\left[\begin{array}{ll}7 & -3 \\ 6 & -2\end{array}\right]$
7) Below a basis is given. Find an orthogonal version of this basis. (10 points)

$$
\left\{\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right\}
$$

8) Suppose that a 8×8 matrix is invertible. What is something else that can be said about the corresponding system of equations $A \vec{x}=\overrightarrow{0}$? (5 points)
9) Suppose that a 8×8 matrix is invertible. What is something else that can be said about the corresponding linear transformation T ? (5 points)
10) Suppose that a 8×8 matrix is invertible. What is something else that can be said about the matrix itself? (5 points)
11) Suppose that a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is onto. What is the maximum dimension of the solution set to $A \vec{x}=\overrightarrow{0}$, where A is the matrix representation of T. (5 points)
12) Suppose that a linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{6}$ is one-to-one. What is the maximum dimension of the solution set to $A \vec{x}=\overrightarrow{0}$, where A is the matrix representation of T. (5 points)
13) Suppose that a linear transformation $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ is invertible. What is the minimum rank of A, where A is the matrix representation of T. (5 points)
