\qquad

1) Use an augmented matrix and row operations to find the inverse of the matrix below.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 2 & -1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc:ccc}
2 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{ccc|ccc}
2 & 0 & -7 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sim_{R}\left[\begin{array}{ccc:ccc}
2 & 0 & 0 & \mid & 1 & -2 \\
7 \\
0 & 1 & 0 & : & 0 & 1 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R_{1} \rightarrow R_{1}+7 R_{3} \\
& \sim_{R}\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & \mid & \frac{1}{2} & -1
\end{array} \frac{7}{2}\right] \quad R_{1} \rightarrow \frac{1}{2} R_{1}
\end{aligned}
$$

$$
A^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & -1 & \frac{7}{2} \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

2) Find a vector that is a linear combination of \vec{u} and \vec{v} below. Justify your answer.

$$
\vec{u}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
3
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2 \\
0
\end{array}\right]
$$

Anything that looks like $a \vec{u}+b \vec{v}$, such as $\vec{u}+\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 4 \\ 3\end{array}\right]$.

