1) Suppose A is a 5×5 matrix and \vec{v} & \vec{w} distinct 5×1 vectors. If both \vec{v} and \vec{w} are solutions to $A\vec{x} = \vec{0}$, how is the largest possible value for $\text{rank}(A)$?

In \mathbb{R}^3, define the two bases below.

$$B_1 = \left\{ \begin{bmatrix} 1 \\ 7 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 8 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} \right\}; B_2 = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\}$$

2) Given the vector $[\vec{x}]_{B_1} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, find $[\vec{x}]_S$

3) Given the vector $[\vec{x}]_{B_2} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, find $[\vec{x}]_{B_1}$