Name \qquad Quiz 3

1) Suppose A is a 5×5 matrix and $\vec{v} \& \vec{w}$ distinct 5×1 vectors. If both \vec{v} and \vec{w} are solutions to $A \vec{x}=\overrightarrow{0}$, how is the largest possible value for $\operatorname{rank}(A)$?

The fact that we have two solutions, tell us that $A \vec{x}=\overrightarrow{0}$ has at least 1 free variable. Hence the maximum possible rank is 4.

In \mathbb{R}^{3}, define the two bases below.

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
7 \\
8 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
4
\end{array}\right]\right\} ; B_{2}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

2) Given the vector $[\vec{x}]_{B_{1}}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$, find $[\vec{x}]_{S}$

$$
\left[\begin{array}{lll}
1 & 7 & 0 \\
2 & 8 & 3 \\
3 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]_{B_{1}}=\left[\begin{array}{l}
23 \\
40 \\
28
\end{array}\right]_{S}
$$

3) Given the vector $[\vec{x}]_{B_{2}}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$, find $[\vec{x}]_{B_{1}}$

$$
\left[\begin{array}{lll}
1 & 7 & 0 \\
2 & 8 & 3 \\
3 & 2 & 4
\end{array}\right]^{-1}\left[\begin{array}{ccc}
1 & -2 & 0 \\
-1 & 3 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]_{B_{1}}=\left[\begin{array}{c}
-\frac{487}{33} \\
\frac{46}{33} \\
\frac{334}{33}
\end{array}\right]_{B_{2}}
$$

