Name \qquad

1) Multiply the matrices below, or state why it is impossible.
(+1/-3 points)

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 3 \\
0 & 5
\end{array}\right]
$$

2) Given the system of equations below, write the corresponding matrix equation $A \vec{x}=\vec{b}$. (+2/-3 points)

$$
\begin{aligned}
2 x_{1}+9 x_{2}-4 x_{3} & =-10 \\
-x_{1}-3 x_{2}+5 x_{3} & =5
\end{aligned}
$$

3) Assume B and D are 3×2 matrices, while C is a 2×3 matrix. Simplify the expression below or explain why it is not possible.
(+2/-3 points)

$$
B\left(C^{T}+D\right)
$$

4) Compute $\vec{u}-\vec{v}$, given the definitions below.
(+1/-5 points)

$$
\vec{u}=\left[\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right] ; \vec{v}=\left[\begin{array}{c}
-4 \\
1 \\
5
\end{array}\right]
$$

5) Given the definitions below, express \vec{b} as a linear combination of \vec{a}_{1} and \vec{a}_{2}, or explain why it is not possible.
(+3/-1 points)

$$
\vec{a}_{1}=\left[\begin{array}{c}
4 \\
-6
\end{array}\right] ; \vec{a}_{2}=\left[\begin{array}{c}
-6 \\
9
\end{array}\right] ; \vec{b}=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

6) Row reduce the matrix below.
($+2 /-2$ points)

$$
\left[\begin{array}{ccc}
-2 & -4 & 0 \\
6 & 12 & 7
\end{array}\right]
$$

7) Solve the system of equations below.
(Hint: look at the previous question)
(+2/-3 points)

$$
\begin{array}{r}
-2 x_{1}-4 x_{2}=0 \\
6 x_{1}+12 x_{2}=7
\end{array}
$$

8) Are the vectors $\left[\begin{array}{c}-2 \\ 6\end{array}\right],\left[\begin{array}{c}-4 \\ 12\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 7\end{array}\right]$ linearly independent? Justify your answer. ($+3 /-2$ points)

True or False: circle the correct answer. A statement is true if it is always true; false if it is ever false.
T or F 9) The set $\mathbb{R}^{m \times n}$ together with the usual definition of matrix addition and scalar multiplication is a vector space.
T or $F 10$) Four distinct vectors in \mathbb{R}^{3} will span \mathbb{R}^{3}.
T or $F 11$) Three distinct nonzero vectors in \mathbb{R}^{4} will be linearly independent.
T or $F 12$) The set of vectors $\left\{\left[\begin{array}{l}a \\ b\end{array}\right]: a, b \in \mathbb{Q}\right\}$ is a subspace of \mathbb{R}^{2}.
(+1/-1 point each)
13) A square matrix B is called idempotent if $B^{2}=B$. Find three examples of 2×2 matrices that are idempotent.
(+3/-1 points)
14) Find three vectors that are in the span of $\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and $\left[\begin{array}{c}9 \\ 15\end{array}\right]$. (+3/-2 points)
15) Find a vector that is not in the span of $\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ (+3/-2 points)

For the problems on this page, use the matrix below on the left. It's row reduced echelon form is shown on the right.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
-2 & -3 & -1 & 4 \\
1 & 4 & -2 & 4 \\
2 & 2 & 2 & -4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

16) Find the row space of $A, R S(A)$. (+2/-3 points)
17) Find the column space of $A, C S(A)$. (+3/-2 points)
18) Find the null space of $A, N S(A)$.
($+4 /-2$ points)

For the problems on this page, use the matrix below on the left. Its row reduced echelon form is shown on the right.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
-2 & -3 & -1 & 4 \\
1 & 4 & -2 & 4 \\
2 & 2 & 2 & -4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

19) Determine if the homogeneous system $A \vec{x}=\overrightarrow{0}$ has any nontrivial solutions. (+4/-3 points)
20) Find a basis for the span of the columns of A.
(+2/-2 points)
21) Expand the set $\left\{\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right\}$ to a basis of \mathbb{R}^{3}
(+2/-3 points)
22) Let A be an 7×5 matrix. You know that $A \vec{x}=\vec{b}$ has no solutions. What else can you say? (Maximum $+4 /-4$ points) (You may list as many statements as you like, each insightful statement is worth +2 or -2 points.)
