\qquad

The entire test is non-calculator. If a question says to "find a formula for..." you do not need to simplify anything or do any arithmetic. If it can be plugged into a computer algebra system such as Wolfram Alpha using commands we've used in class, your answer is good enough!

Choose EIGHT of the first 10 problems to complete for ($+5 /-5$) points each. Problem 11 cannot be skipped. If you have extra time and want to gamble for extra credit, you can attempt additional problems: for each additional problem attempted you will receive a-2 point penalty along with whatever point(s) you earn on that problem.

1) Let V be the set of polynomials of degree at most 2 with basis $B=\left\{x^{2}, x, 1\right\}$. Also define a linear transformation $T: V \rightarrow V$ via $T\left(a x^{2}+b x+c\right)=3 a-2 c x^{2}$. Find the matrix representation of $T,[T]_{B}^{B}$.
2) Let B_{1} and B_{2} be bases of \mathbb{R}^{5} and \mathbb{R}^{7} respectively. A linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{7}$ is also defined. Draw the diagram that illustrates the interplay between the following eight mathematical objects:

$$
\mathbb{R}_{S}^{5}, \mathbb{R}_{B_{1}}^{5}, \quad \mathbb{R}_{S}^{7}, \quad \mathbb{R}_{B_{2}}^{7}, \quad[T]_{B_{1}}^{B_{2}},[T]_{S}^{S}, \quad[I]_{B_{1}}^{S}, \quad[I]_{B_{2}}^{S}
$$

3) Given the information below, find a formula for the change of basis matrix $[I]_{B_{1}}^{B_{2}}$

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right\} B_{2}=\left\{\left[\begin{array}{l}
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
9
\end{array}\right]\right\}
$$

4) Let U and V be linear transformations as defined below. Find a formula for the matrix representing $[V \circ U]_{S}$.

$$
\begin{array}{rlrl}
U: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} & V: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} & \mapsto\left[\begin{array}{l}
x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right] & {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{l}
5 x+5 y+6 z \\
8 x+8 y+7 z \\
9 x+10 y+z
\end{array}\right]}
\end{array}
$$

5) Given the information below, find a formula for $\left[T^{-1}\right]_{B_{2}}^{S}$.

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right\} B_{2}=\left\{\left[\begin{array}{l}
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
9
\end{array}\right]\right\}, T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{S}\right)=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{2}
\end{array}\right]_{S}
$$

6) Find an eigenvector of the matrix below. Show your work.

$$
\left[\begin{array}{ccc}
2 & 4 & -4 \\
0 & 1 & 1 \\
0 & -3 & 5
\end{array}\right]
$$

7) The matrix A has eigenvalue $\lambda_{1}=2$ with eigenvector $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$, eigenvalue -7 with eigenvectors $\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Give its diagonalization.
8) Given the basis $\left\{\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]\right\}$ of a vector space, find an orthogonal basis spanning the same vector space.
9) Let V be the vector space \mathbb{R}^{3} with basis $B=\left\{\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right]\right\}$. Given the linear transformation below, find a formula for $T\left(\left[\begin{array}{l}7 \\ 6 \\ 5\end{array}\right]_{B}\right)$.

$$
\begin{aligned}
& T: V \rightarrow \mathbb{R}_{S}^{3} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{l}
x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right]}
\end{aligned}
$$

10) Let V be the vector space \mathbb{R}^{3} with basis $B=\left\{\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right]\right\}$.

Given the coordinate vector $[\vec{v}]_{B}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{B}$, find $[\vec{v}]_{S}$.
11) Let A be an 3×3 matrix. You know that it has eigenvalues $\lambda_{1}=2, \lambda_{2}=5, \lambda_{3}=10$. What else can you say?
(Maximum $+10 /-10$ points) (You may list as many statements as you like, each insightful statement is worth +2 or -2 points.)

