\qquad

The entire test is non-calculator. If a question says to "find a formula for..." you do not need to simplify anything or do any arithmetic. If it can be plugged into a computer algebra system such as Wolfram Alpha using commands we've used in class, your answer is good enough!

Choose EIGHT of the first 10 problems to complete for ($+5 /-5$) points each. Problem 11 cannot be skipped. If you have extra time and want to gamble for extra credit, you can attempt additional problems: for each additional problem attempted you will receive a-2 point penalty along with whatever point(s) you earn on that problem.

1) Let V be the set of polynomials of degree at most 2 with basis $B=\left\{x^{2}, x, 1\right\}$. Also define a linear transformation $T: V \rightarrow V$ via $T\left(a x^{2}+b x+c\right)=3 a-2 c x^{2}$. Find the matrix representation of $T,[T]_{B}^{B}$.

$$
\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right]
$$

2) Let B_{1} and B_{2} be bases of \mathbb{R}^{5} and \mathbb{R}^{7} respectively. A linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{7}$ is also defined. Draw the diagram that illustrates the interplay between the following eight mathematical objects:

$$
\mathbb{R}_{S}^{5}, \quad \mathbb{R}_{B_{1}}^{5}, \quad \mathbb{R}_{S}^{7}, \quad \mathbb{R}_{B_{2}}^{7}, \quad[T]_{B_{1}}^{B_{2}},[T]_{S}^{S},[I]_{B_{1}}^{S}, \quad[I]_{B_{2}}^{S}
$$

3) Given the information below, find a formula for the change of basis matrix $[I]_{B_{1}}^{B_{2}}$

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right\} B_{2}=\left\{\left[\begin{array}{l}
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
9
\end{array}\right]\right\}
$$

$$
[I]_{B_{1}}^{B_{2}}=[I]_{S}^{B_{2}}[I]_{B_{1}}^{S}=\left([I]_{B_{2}}^{S}\right)^{-1}[I]_{B_{1}}^{S}=\left[\begin{array}{ll}
3 & 0 \\
0 & 9
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 5 \\
2 & 6
\end{array}\right]
$$

4) Let U and V be linear transformations as defined below. Find a formula for the matrix representing $[V \circ U]_{S}$.

$$
\begin{array}{rlrl}
U: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} & V: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]} & \mapsto\left[\begin{array}{c}
x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right] & {\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \mapsto\left[\begin{array}{l}
5 x+5 y+6 z \\
8 x+8 y+7 z \\
9 x+10 y+z
\end{array}\right]}
\end{array}
$$

$$
\left[\begin{array}{ccc}
5 & 5 & 6 \\
8 & 8 & 7 \\
9 & 10 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

5) Given the information below, find a formula for $\left[T^{-1}\right]_{B_{2}}^{S}$.

$$
\begin{gathered}
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right\} B_{2}=\left\{\left[\begin{array}{l}
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
9
\end{array}\right]\right\}, T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{S}\right)=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{2}
\end{array}\right]_{S} \\
{[T]_{S}^{S}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]} \\
\left([T]_{S}^{S}\right)^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1} \\
{\left[T^{-1}\right]_{B_{2}}^{S}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
3 & 0 \\
0 & 9
\end{array}\right]}
\end{gathered}
$$

6) Find an eigenvector of the matrix below. Show your work.

$$
\begin{aligned}
&|A-x I|= {\left[\begin{array}{ccc}
2 & 4 & -4 \\
0 & 1 & 1 \\
0 & -3 & 5
\end{array}\right] } \\
&\left|\begin{array}{ccc}
-x & 4 & -4 \\
0 & 1-x & 1 \\
0 & -3 & 5-x
\end{array}\right|=(2-x)((1-x)(5-x)+3)=(2-x)\left(x^{2}-6 x+5+3\right) \\
&=(2-x)\left(x^{2}-6 x+8\right)=(2-x)(x-2)(x-4)=-(x-2)^{2}(x-4)
\end{aligned}
$$

The eigenvalues are 2 and 4 . We could have seen $\lambda=2$ without doing so much work, however. So let's use that eigenvalue:

$$
A-2 I=\left[\begin{array}{ccc}
0 & 4 & -4 \\
0 & -1 & 1 \\
0 & -3 & 3
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

From the above we see that this eigenspace is: $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)$. Choosing one vector in this space, , we get our answer:

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

7) The matrix A has eigenvalue $\lambda_{1}=2$ with eigenvector $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$, eigenvalue -7 with eigenvectors $\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Give its diagonalization.

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & -7
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 1 \\
1 & 0 & 1
\end{array}\right]^{-1}
$$

8) Given the basis $\left\{\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]\right\}$ of a vector space, find an orthogonal basis spanning the same vector space.

$$
\begin{gathered}
\vec{b}_{1}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right] \\
\operatorname{proj}_{\vec{b}_{1}}\left(\vec{v}_{1}\right)=\frac{2}{5}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{4}{5} \\
0 \\
\frac{2}{5}
\end{array}\right]
\end{gathered}
$$

$$
\vec{b}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]-\left[\begin{array}{l}
\frac{4}{5} \\
0 \\
\frac{2}{5}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5} \\
3 \\
-\frac{2}{5}
\end{array}\right]
$$

9) Let V be the vector space \mathbb{R}^{3} with basis $B=\left\{\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right]\right\}$. Given the linear transformation below, find a formula for $T\left(\left[\begin{array}{l}7 \\ 6 \\ 5\end{array}\right]_{B}\right)$.

$$
\begin{aligned}
T: V & \rightarrow \mathbb{R}_{S}^{3} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & \mapsto\left[\begin{array}{c}
x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
7 \\
6 \\
5
\end{array}\right] }
\end{aligned}
$$

${ }^{* *}$ Note that the actual definition of B didn't affect our answer, because T was encoded on V itself.
10) Let V be the vector space \mathbb{R}^{3} with basis $B=\left\{\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right]\right\}$.

Given the coordinate vector $[\vec{v}]_{B}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{B}$, find $[\vec{v}]_{S}$.

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
2 \\
6 \\
12
\end{array}\right]
$$

11) Let A be an 3×3 matrix. You know that it has eigenvalues $\lambda_{1}=2, \lambda_{2}=5, \lambda_{3}=10$. What else can you say?
(Maximum $+10 /-10$ points) (You may list as many statements as you like, each insightful statement is worth +2 or -2 points.)

This is the big theorem. Here is a selection of statements that we can say. The key piece of information to notice is that $\lambda=0$ is not an eigenvalue, as a 3×3 matrix can have only 3 eigenvalues. That means that A is nonsingular. Other things we can say are:

Statements on solutions and free variables:

The equation $A \vec{x}=\vec{b}$ has a free variable - FALSE
The equation $A \vec{x}=\vec{b}$ has a unique solution for each \vec{b} - TRUE
The equation $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions - FALSE
The equation $A \vec{x}=\overrightarrow{0}$ has only $\vec{x}=\overrightarrow{0}$ as a solution - TRUE

Statements on linear dependence and independence of rows and columns:

The rows of A are linearly dependent - FALSE
The rows of A are linearly independent - TRUE
The columns of A are linearly independent - TRUE
The columns of A are linearly dependent - FALSE

Statements on the matrix itself

In echelon form, every row has a pivot - TRUE
In echelon form every column has a pivot - TRUE
In echelon form A has a row of zeroes - FALSE
The row space spans \mathbb{R}^{3} - TRUE
The column space spans \mathbb{R}^{3} - TRUE
The null space is nontrivial - FALSE
The matrix is invertible - TRUE
The matrix is a product of elementary matrices - TRUE
The matrix is singular - FALSE
The rank of the matrix is $3-$ TRUE
The determinant of the matrix is zero - FALSE

Statements on the corresponding linear transformation

The corresponding linear transformation is one-to-one - TRUE
The corresponding linear transformation is onto - TRUE

Statements on eigenvalues and diagonalization

$\lambda=0$ is not an eigenvalue - TRUE
The matrix is diagonalizable - TRUE

