Name

The entire test is non-calculator. If a question says to "find a formula for..." you do not need to simplify anything or do any arithmetic. If it can be plugged into a computer algebra system such as Wolfram Alpha using commands we've used in class, your answer is good enough!

Choose EIGHT of the first 10 problems to complete for (+5/-5) points each. Problem 11 cannot be skipped. If you have extra time and want to gamble for extra credit, you can attempt additional problems: for each additional problem attempted you will receive a -2 point penalty along with whatever point(s) you earn on that problem.

1) Let V be the set of polynomials of degree at most 2 with basis $B = \{x^2, x, 1\}$. Also define a linear transformation $T: V \to V$ via $T(ax^2 + bx + c) = 3a - 2cx^2$. Find the matrix representation of T, $[T]_B^B$.

[0]	0	-2]
0	0	0
3	0	0

2) Let B_1 and B_2 be bases of \mathbb{R}^5 and \mathbb{R}^7 respectively. A linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^7$ is also defined. Draw the diagram that illustrates the interplay between the following eight mathematical objects: $\mathbb{R}^5_S, \mathbb{R}^5_{B_1}, \mathbb{R}^7_S, \mathbb{R}^7_{B_2}, [T]^{B_2}_{B_1}, [T]^S_S, [I]^S_{B_1}, [I]^S_{B_2}$

3) Given the information below, find a formula for the change of basis matrix $[I]_{B_1}^{B_2}$

$$B_1 = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 5\\6 \end{bmatrix} \right\} B_2 = \left\{ \begin{bmatrix} 3\\0 \end{bmatrix}, \begin{bmatrix} 0\\9 \end{bmatrix} \right\}$$

 $[I]_{B_1}^{B_2} = [I]_{S}^{B_2}[I]_{B_1}^{S} = ([I]_{B_2}^{S})^{-1}[I]_{B_1}^{S} = \begin{bmatrix} 3 & 0\\ 0 & 9 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 5\\ 2 & 6 \end{bmatrix}$

4) Let U and V be linear transformations as defined below. Find a formula for the matrix representing $[V \circ U]_S$.

$U: \mathbb{R}^3 \to \mathbb{R}^3$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x+1 \\ 4x+1 \\ 7x+1 \end{bmatrix}$	2y + 5y + 8y -	• 3z + 6z + 9z]	V	$: \mathbb{R}^3$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	$ \rightarrow \mathbb{R}^{3} \mapsto \begin{bmatrix} 5x + 5y + 6z \\ 8x + 8y + 7z \\ 9x + 10y + z \end{bmatrix} $
	[5	5	6	2	3
	8	8	7 4	5	6
	9	10	1 7	8	9

5) Given the information below, find a formula for $[T^{-1}]_{B_2}^S$.

$$B_{1} = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 5\\6 \end{bmatrix} \right\} B_{2} = \left\{ \begin{bmatrix} 3\\0 \end{bmatrix}, \begin{bmatrix} 0\\9 \end{bmatrix} \right\}, T\left(\begin{bmatrix} x_{1}\\x_{2} \end{bmatrix}_{S} \right) = \begin{bmatrix} x_{1} + x_{2}\\x_{2} \end{bmatrix}_{S}$$
$$[T]_{S}^{S} = \begin{bmatrix} 1 & 1\\0 & 1 \end{bmatrix}$$
$$([T]_{S}^{S})^{-1} = \begin{bmatrix} 1 & 1\\0 & 1 \end{bmatrix}^{-1}$$
$$[T^{-1}]_{B_{2}}^{S} = \begin{bmatrix} 1 & 1\\0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 0\\0 & 9 \end{bmatrix}$$

6) Find an eigenvector of the matrix below. Show your work.

$$\begin{bmatrix} 2 & 4 & -4 \\ 0 & 1 & 1 \\ 0 & -3 & 5 \end{bmatrix}$$

$$|A - xI| = \begin{vmatrix} 2 - x & 4 & -4 \\ 0 & 1 - x & 1 \\ 0 & -3 & 5 - x \end{vmatrix} = (2 - x)((1 - x)(5 - x) + 3) = (2 - x)(x^2 - 6x + 5 + 3)$$
$$= (2 - x)(x^2 - 6x + 8) = (2 - x)(x - 2)(x - 4) = -(x - 2)^2(x - 4)$$

The eigenvalues are 2 and 4. We could have seen $\lambda = 2$ without doing so much work, however. So let's use that eigenvalue:

$$A - 2I = \begin{bmatrix} 0 & 4 & -4 \\ 0 & -1 & 1 \\ 0 & -3 & 3 \end{bmatrix} \sim_R \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

From the above we see that this eigenspace is: $span\begin{pmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Choosing one vector in this space, , we get our answer:

 $\begin{bmatrix} 1\\ 0\\ 0\end{bmatrix}$

7) The matrix *A* has eigenvalue $\lambda_1 = 2$ with eigenvector $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$, eigenvalue -7 with eigenvectors $\begin{bmatrix} 1\\3\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Give its diagonalization.

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -7 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 1 & 0 & 1 \end{bmatrix}^{-1}$$

8) Given the basis $\left\{ \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\0 \end{bmatrix} \right\}$ of a vector space, find an orthogonal basis spanning the same vector space.

$$\vec{b}_{1} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$
$$\vec{v}_{1} = \begin{bmatrix} 1\\3\\0 \end{bmatrix}$$
$$proj_{\vec{b}_{1}}(\vec{v}_{1}) = \frac{2}{5} \begin{bmatrix} 2\\0\\1 \end{bmatrix} = \begin{bmatrix} \frac{4}{5}\\0\\\frac{2}{5} \end{bmatrix}$$

$$\vec{b}_2 = \begin{bmatrix} 1\\3\\0 \end{bmatrix} - \begin{bmatrix} \frac{4}{5}\\0\\\frac{2}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{5}\\3\\-\frac{2}{5} \end{bmatrix}$$

9) Let *V* be the vector space \mathbb{R}^3 with basis $B = \left\{ \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\4 \end{bmatrix} \right\}$. Given the linear transformation below, find a formula for $T\left(\begin{bmatrix} 7\\6\\5 \end{bmatrix}_B \right)$. $T: V \to \mathbb{R}^3_S$ $\begin{bmatrix} x\\y\\z \end{bmatrix} \mapsto \begin{bmatrix} x+2y+3z\\4x+5y+6z\\7x+8y+9z \end{bmatrix}$ $\begin{bmatrix} 1&2&3\\4&5&6\\7&8&9 \end{bmatrix} \begin{bmatrix} 7\\6\\5 \end{bmatrix}$

**Note that the actual definition of *B* didn't affect our answer, because *T* was encoded on *V* itself.

10) Let *V* be the vector space \mathbb{R}^3 with basis $B = \left\{ \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\4 \end{bmatrix} \right\}$. Given the coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_B = \begin{bmatrix} 1\\2\\3 \end{bmatrix}_B$, find $\begin{bmatrix} \vec{v} \end{bmatrix}_S$.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 12 \end{bmatrix}$$

11) Let A be an 3 × 3 matrix. You know that it has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 5$, $\lambda_3 = 10$. What else can you say? (Maximum +10/-10 points) (You may list as many statements as you like, each insightful statement is worth +2 or -2 points.)

This is the big theorem. Here is a selection of statements that we can say. The key piece of information to notice is that $\lambda = 0$ is not an eigenvalue, as a 3×3 matrix can have only 3 eigenvalues. That means that A is nonsingular. Other things we can say are:

Statements on solutions and free variables:

The equation $A\vec{x} = \vec{b}$ has a free variable – FALSE The equation $A\vec{x} = \vec{b}$ has a unique solution for each \vec{b} - TRUE The equation $A\vec{x} = \vec{0}$ has infinitely many solutions – FALSE The equation $A\vec{x} = \vec{0}$ has only $\vec{x} = \vec{0}$ as a solution - TRUE

Statements on linear dependence and independence of rows and columns:

The rows of A are linearly dependent – FALSE The rows of A are linearly independent – TRUE The columns of A are linearly independent – TRUE The columns of A are linearly dependent – FALSE

Statements on the matrix itself

In echelon form, every row has a pivot – TRUE In echelon form every column has a pivot – TRUE In echelon form A has a row of zeroes – FALSE The row space spans \mathbb{R}^3 – TRUE The column space spans \mathbb{R}^3 – TRUE The null space is nontrivial – FALSE The matrix is invertible – TRUE The matrix is a product of elementary matrices – TRUE The matrix is singular – FALSE The rank of the matrix is 3 – TRUE The determinant of the matrix is zero – FALSE

Statements on the corresponding linear transformation

The corresponding linear transformation is one-to-one – TRUE The corresponding linear transformation is onto – TRUE

Statements on eigenvalues and diagonalization

 $\lambda = 0$ is not an eigenvalue - TRUE The matrix is diagonalizable – TRUE