1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$\begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & -1 \\ 0 & 2 \end{bmatrix}$$

2) Find the null space of the matrix below. (16 points)

$$\begin{bmatrix} 1 & 0 & 3 & 0 & -2 \\ 0 & 2 & 4 & 0 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

3) Reduce the matrix below to reduced row echelon form. (16 points)

$$\begin{bmatrix} 2 & 4 & 6 & 8 & 24 \\ 1 & 2 & 3 & 4 & 13 \\ 0 & 1 & 2 & 1 & 6 \\ 0 & 1 & 2 & 2 & 6 \end{bmatrix}$$

- 4) Answer the questions below (3 points each)
 - (A) Let A be a 3×3 matrix that is a product of elementary matrices. How many solutions does $A\vec{x} = \vec{0}$ have?
 - (B) If \vec{A} is a 5 × 4 matrix and \vec{b} a nonzero vector such that $\vec{A}\vec{x} = \vec{b}$ has infinitely many solutions, what is the minimum possible number of zero rows A has after it is row-reduced?
 - (C) Let A be a 2×2 invertible matrix. How many solutions does $A\vec{x} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ have?
 - (D) Let A be a 3×3 invertible matrix and B a 3×3 singular matrix. What is the dimension of the row space of the augmented matrix [A|B]?
 - (E) Let A be a 5×5 matrix and assume that $A\vec{x} = \vec{0}$ and $A\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 0 \\ 0 \end{bmatrix}$ have infinitely many solutions, but $A\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}$ has no solutions. What is the minimum and the maximum number of pivots A can

but
$$A\vec{x} = \begin{bmatrix} 1\\2\\3\\0\\0 \end{bmatrix}$$
 has no solutions. What is the minimum and the maximum number of pivots A can

have when in row reduced echelon form?

5) Let
$$\vec{v} = \begin{bmatrix} 1\\2\\3\\4\\-5\\0 \end{bmatrix}$$
. Find $5\vec{v}$. (8 points)

6) Are $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix}$ and $\begin{bmatrix} -8 & 5 & 2 \\ 6 & -4 & -1 \\ -1 & 1 & 0 \end{bmatrix}$ inverses of each other? Either explain your answer or show your work. (8 points)

For the problems on this page, you may be interested in the fact that

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 7 \\ 2 & 4 & 6 & 8 & 5 \\ 1 & 2 & 4 & 5 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

7) Find the row space of the matrix below. Avoid using redundant vectors when possible. (7 points)

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 7 \\ 2 & 4 & 6 & 8 & 5 \\ 1 & 2 & 4 & 5 & 0 \end{bmatrix}$$

8) Find the dimension of the vector space below. (8 points)

$$span\left(\left\{\begin{bmatrix}1\\2\\2\\1\end{bmatrix},\begin{bmatrix}2\\3\\4\\2\end{bmatrix},\begin{bmatrix}3\\5\\6\\4\end{bmatrix},\begin{bmatrix}4\\8\\8\\5\end{bmatrix}\right)\right)$$

9) Given $A=\begin{bmatrix}1&7\\2&3\end{bmatrix}$ And f(x)=3x+2, find P(A). (7 points)