\qquad

1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
4 & -1 \\
0 & 2
\end{array}\right]} \\
{\left[\begin{array}{cc}
2+8 & 3-2 \\
6-4 & 9+1+4
\end{array}\right]=\left[\begin{array}{cc}
10 & 1 \\
2 & 14
\end{array}\right]}
\end{gathered}
$$

2) Find the null space of the matrix below. (16 points)

$$
\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 & -2 \\
0 & 2 & 4 & 0 & 8 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$x_{1}+3 x_{3}-2 x_{5}=0$
$x_{1}=-3 x_{3}+2 x_{5}$
$2 x_{2}+4 x_{3}+8 x_{5}=0$
$x_{2}=-2 x_{3}-4 x_{5}$
$x_{4}-2 x_{5}=0$
$x_{4}=2 x_{5}$

The Null space is:

$$
\left\{\left[\begin{array}{c}
-3 x_{3}+2 x_{5} \\
-2 x_{3}-4 x_{5} \\
x_{3} \\
2 x_{5} \\
x_{5}
\end{array}\right]: x_{3}, x_{5} \in \mathbb{R}\right\}=\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right] x_{3}+\left[\begin{array}{c}
2 \\
-4 \\
0 \\
2 \\
1
\end{array}\right] x_{5}: x_{3}, x_{5} \in \mathbb{R}\right\}=\operatorname{span}\left(\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-4 \\
0 \\
2 \\
1
\end{array}\right]\right\}\right)
$$

3) Reduce the matrix below to reduced row echelon form. (16 points)

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 4 & 6 & 8 & 24 \\
1 & 2 & 3 & 4 & 13 \\
0 & 1 & 2 & 1 & 6 \\
0 & 1 & 2 & 2 & 6
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \sim_{R}\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 12 \\
0 & 1 & 2 & 2 & 6 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 2 & 2 & 6 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 2 & 2 & 6 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 2 & 0 & 6 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-R_{2} \quad R_{1} \rightarrow R_{1}-2 R_{2} \quad R_{3} \rightarrow-R_{3} \quad R_{2} \rightarrow R_{2}-2 R_{3} \\
& \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-6 R_{4}
\end{aligned}
$$

4) Answer the questions below (3 points each)
(A) Let A be a 3×3 matrix that is a product of elementary matrices. How many solutions does $A \vec{x}=\overrightarrow{0}$ have?

1
(B) If A is a 5×4 matrix and \vec{b} a nonzero vector such that $A \vec{x}=\vec{b}$ has infinitely many solutions, what is the minimum possible number of zero rows A has after it is row-reduced?

2
(C) Let A be a 2×2 invertible matrix. How many solutions does $A \vec{x}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ have?

1
(D) Let A be a 3×3 invertible matrix and B a 3×3 singular matrix. What is the dimension of the row space of the augmented matrix $[A \mid B]$?

3
(E) Let A be a 5×5 matrix and assume that $A \vec{x}=\overrightarrow{0}$ and $A \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 4 \\ 0 \\ 0\end{array}\right]$ have infinitely many solutions, but $A \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0 \\ 0\end{array}\right]$ has no solutions. What is the minimum and the maximum number of pivots A can have when in row reduced echelon form?

At minimum there is 1 , at maximum there are 4 .
5) Let $\vec{v}=\left[\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ -5 \\ 0\end{array}\right]$. Find $5 \vec{v}$. (8 points)
$5\left[\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ -5 \\ 0\end{array}\right]=\left[\begin{array}{c}5 \\ 10 \\ 15 \\ 20 \\ -25 \\ 0\end{array}\right]$
6) $\operatorname{Are}\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 4 \\ 2 & 3 & 2\end{array}\right]$ and $\left[\begin{array}{ccc}-8 & 5 & 2 \\ 6 & -4 & -1 \\ -1 & 1 & 0\end{array}\right]$ inverses of each other? Either explain your answer or show your work. (8 points)

They are inverses of each other:
$\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 4 \\ 2 & 3 & 2\end{array}\right]\left[\begin{array}{ccc}-8 & 5 & 2 \\ 6 & -4 & -1 \\ -1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

For the problems on this page, you may be interested in the fact that

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 8 & 7 \\
2 & 4 & 6 & 8 & 5 \\
1 & 2 & 4 & 5 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

7) Find the row space of the matrix below. Avoid using redundant vectors when possible. (7 points)

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 8 & 7 \\
2 & 4 & 6 & 8 & 5 \\
1 & 2 & 4 & 5 & 0
\end{array}\right]} \\
& \operatorname{span}\left(\left\{[140060],\left[\begin{array}{lllll}
0 & 1 & 0 & -1 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]\right\}\right) \\
& =\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
0
\end{array}\right]^{T},\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1 \\
0
\end{array}\right]^{T},\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]^{T},\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]^{T}\right\}\right)
\end{aligned}
$$

8) Find the dimension of the vector space below. (8 points)

$$
\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
5 \\
6 \\
4
\end{array}\right],\left[\begin{array}{l}
4 \\
8 \\
8 \\
5
\end{array}\right]\right\}\right)
$$

9) Given $A=\left[\begin{array}{ll}1 & 7 \\ 2 & 3\end{array}\right]$ And $f(x)=3 x+2$, find $P(A)$. (7 points)
$3\left[\begin{array}{ll}1 & 7 \\ 2 & 3\end{array}\right]+2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 21 \\ 6 & 11\end{array}\right]$
