$\qquad$

1) Find the determinant of the matrix below. (15 points)

$$
\begin{gathered}
{\left[\begin{array}{lllll}
0 & 2 & 0 & 0 & 0 \\
5 & 8 & 1 & 0 & 0 \\
6 & 6 & 0 & 1 & 0 \\
0 & 4 & 0 & 0 & 1 \\
0 & 2 & 2 & 3 & 4
\end{array}\right]} \\
\left.\begin{array}{lllll}
0 & 2 & 0 & 0 & 0 \\
5 & 8 & 1 & 0 & 0 \\
6 & 6 & 0 & 1 & 0 \\
0 & 4 & 0 & 0 & 1 \\
0 & 2 & 2 & 3 & 4
\end{array}|=-2| \begin{array}{llll}
5 & 1 & 0 & 0 \\
6 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 2 & 3 & 4
\end{array}|=(-2)(-1)| \begin{array}{lll}
5 & 1 & 0 \\
6 & 0 & 1 \\
0 & 2 & 3
\end{array} \right\rvert\, \\
=(-2)(-1)\left(5\left|\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right|-1\left|\begin{array}{ll}
6 & 1 \\
0 & 3
\end{array}\right|\right)=(-2)(-1)(5(-2)-1(18)) \\
= \\
=(-2)(-1)(-28)=-56
\end{gathered}
$$

2) Given the two bases below, find the change of basis matrix that converts information from coordinate vectors in $B_{2}$ to coordinate vectors in $B_{1}$, denoted by $[I]_{B_{2}}^{B_{1}}$. You do not need to perform the arithmetic. (10 points)

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right\} \quad B_{2}=\left\{\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]\right\}
$$

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 3 \\
2 & 2 & 4
\end{array}\right]^{-1}\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

3) Given the two bases and vector below, find a formula for $\vec{x}_{B_{2}}$. You do not need to perform the arithmetic. (10 points)

$$
\begin{gathered}
B_{1}=\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right\} \quad B_{2}=\left\{\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]\right\} \quad \vec{x}_{B_{1}}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]_{B_{1}} \\
{\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 3 \\
2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]_{B_{1}}}
\end{gathered}
$$

4) Answer the questions below (3 points each)
(A) Let $A$ be a $3 \times 3$ matrix such that $A \vec{x}=\overrightarrow{0}$ has one free variable. What is $|A|$ ?

0
(B) Let $A$ be a $3 \times 5$ matrix such that, when row reduced, has only 1 pivot. What is the dimension of the null space of $A$, often written $\operatorname{dim}(N S(A))$ ?

4
(C) Let $A$ be a $5 \times 3$ matrix and $T$ be the corresponding linear transformation. Assume $T$ is one-toone. How many pivots does $A$ have, when row reduced?

3
(D) Let $A \vec{x}=\overrightarrow{0}$ be a system of equations that has multiple solutions. How many solutions does it have?
$\infty$
(E) Let $A$ be a $11 \times 7$ matrix. There are 6 linearly independent rows. What is the rank of $A$ ?

6
5) Given the linear transformation below, determine whether or not it is one-to-one and justify your answer. ( 10 points. 3 for the answer; 7 for the reasoning)

$$
\begin{gathered}
T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} \\
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
\end{gathered}
$$

It is not one to one because there is a column without pivots.
6) Given the linear transformation below, determine whether or not it is onto and justify your answer. (10 points. 3 for the answer; 7 for the reasoning)

$$
\begin{gathered}
T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} \\
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
\end{gathered}
$$

It is not onto because there is a row without pivots.
7) Find the determinant of the matrix below ( 5 points)

$$
6 \cdot 2-4 \cdot 5=12-20=-8
$$

8) Find the product below (10 points)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 4 & 5 \\
2 & 3 & 4 \\
4 & -1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 3 \\
5 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc}
30 & 18 & 8 \\
23 & 16 & 10 \\
-1 & 4 & 14
\end{array}\right]}
\end{gathered}
$$

9) Given the system of equations below. Determine how many solutions it has. (5 points)

$$
\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]
$$

$\infty$
10) Given the system of equations below. Express its solution set in proper notation. (10 points)

$$
\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]
$$

$x_{3}=2-2 x_{4}$
$x_{1}=4-3 x_{2}$
$x_{2}$ and $x_{4}$ are free.
The solution set is:

$$
\left\{\left[\begin{array}{c}
4-3 x_{2} \\
x_{2} \\
2-2 x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{\left[\begin{array}{l}
4 \\
0 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
-2 \\
4
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

