Name \qquad

1) Find the product below.

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 3 \\
5 & -2
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
1 & 3 \\
5 & -2
\end{array}\right]\left[\begin{array}{cc}
2 & 4 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
2+0 & 4+3 \\
10+0 & 20-2
\end{array}\right]=\left[\begin{array}{cc}
2 & 7 \\
10 & 18
\end{array}\right]}
\end{gathered}
$$

2) Find the sum below.

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 3 \\
5 & -2
\end{array}\right]+\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
1 & 3 \\
5 & -2
\end{array}\right]+\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & 7 \\
5 & -1
\end{array}\right]}
\end{gathered}
$$

3) Solve the following matrix equation for X.

$$
\begin{gathered}
A X+B=C \\
A X=C-B \\
X=A^{-1}(C-B)
\end{gathered}
$$

${ }^{* * *}$ Common mistake: A lot of people received no credit here because they either multiplied on the wrong side, $(C-B) A^{-1}$ or failed to realize which side you multiply on matters, $\frac{C-B}{A}$.
4) Solve the system of equations below.

$$
\begin{array}{r}
x_{1}+4 x_{2}+x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}
$$

x_{3} is free.
$x_{2}=x_{3}$
$x_{1}=-5 x_{3}$
Each solution looks like $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-5 x_{3} \\ x_{3} \\ x_{3}\end{array}\right]$

The solution set is $\left\{\left[\begin{array}{c}-5 x_{3} \\ x_{3} \\ x_{3}\end{array}\right]: x_{3} \in \mathbb{R}\right\}$
***Common mistake: A lot of people lost one point because they found what the solutions look like, but did not actually give the collection of $a l l$ the solutions. That is, the solution set.

