Name \qquad

1) Row reduce the matrix below until it is in reduced echelon form. Show your work.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & 6 & 18 & 0 \\
2 & 4 & 8 & 16 \\
1 & 2 & 4 & 8
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
3 & 6 & 18 & 0 \\
2 & 4 & 8 & 16 \\
1 & 2 & 4 & 8
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 6 & 0 \\
2 & 4 & 8 & 16 \\
1 & 2 & 4 & 8
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 6 & 0 \\
0 & 0 & -4 & 16 \\
0 & 0 & -2 & 8
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 6 & 0 \\
0 & 0 & 1 & -4 \\
0 & 0 & -2 & 8
\end{array}\right] \sim_{R}\left[\begin{array}{cccc}
1 & 2 & 0 & 24 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{1} \rightarrow \frac{1}{3} R_{1} \quad R_{2} \rightarrow R_{2}-2 R_{1} \quad R_{2} \rightarrow-\frac{1}{4} R_{2} \quad R_{1} \rightarrow R_{1}-6 R_{2} \\
& R_{3} \rightarrow R_{3}-1 R_{1} \quad R_{3} \rightarrow R_{3}+2 R_{2}
\end{aligned}
$$

Partial credit varies based on your work and how close your final matrix is to echelon form.
2) Assume the matrix A is an invertible 5×5 matrix. How many solutions does the matrix equation below have?

$$
A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
4 \\
7
\end{array}\right]
$$

Because A is invertible, it has exactly one solution. Namely:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=A^{-1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
4 \\
7
\end{array}\right]
$$

Half credit: One of the other possible answers to similar but different questions: 0 or ∞

No credit: Impossible answers such as a set, vector, or 7.
3) Find the length of the vector below.

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0 \\
3 \\
4
\end{array}\right]} \\
\sqrt{0^{2}+0^{2}+3^{2}+4^{2}}=5
\end{gathered}
$$

Half credit: any other number.

No credit: Impossible answers such as a set, vector, or matrix.

